Supplementary Online Content

eMethods 1. Global Burden of Disease overview

eMethods 2. Outcomes estimations

eMethods 3. Fatal cause-specific estimation process

eMethods 4. Nonfatal modeling methods

eMethods 5. Risk factor cause-specific estimation process

eTable 1. Disability-adjusted life-years (DALYs) and percentage change of DALYs for all cardiovascular causes by US state, total number and age-standardized rate for 1990, 2006, and 2016 for both sexes

eTable 2. Age-standardized heart failure prevalence per 100 000 persons for 2016

eFigure 1. US State rankings for age-standardized cardiovascular disease disability-adjusted life-year rates per 100 000 persons for both sexes combined in 2016

eFigure 2. Proportion of cardiovascular disease disability-adjusted life-years due to years lived with disability in 2016

eFigure 3. Leading level 2 cardiovascular risk factors for both sexes for Minnesota and Mississippi

eFigure 4. US State drivers of change in cardiovascular disease from 1990 to 2016

eFigure 5. Age-standardized percentage change in disability-adjusted life-year rate between 2010 and 2016 for all cardiovascular diseases

This supplementary material has been provided by the authors to give readers additional information about their work.
eMethods 1. Global Burden of Disease Overview

a. GATHER statement
This study is in compliance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) recommendations. The GBD 2016 capstone papers and their respective supplementary documents contain the general methods, data sources, model selection information, performance and limitation information for the GBD 2016 analyses including detailed GATHER documentation. Appendix Table 1 contains GATHER compliance information for this publication.

b. GBD Cause List
The GBD Cause List is organized into six levels, consisting of a hierarchy that is mutually exclusive and collectively exhaustive. Details on the overall GBD Cause list have been documented elsewhere. Appendix Table 2 contains the cause and sequelae list for Cardiovascular Diseases.

c. Socio-Demographic Index (SDI)
The Socio-demographic Index (SDI) is a composite indicator of development status constructed for GBD 2015 whose components are strongly correlated with health outcomes. SDI was calculated using the Human Development Index (HDI) methodology, wherein an index value was determined for each of the covariate inputs (log LDI, mean educational attainment over age 15, and TFR). Detailed methodology and analysis information for SDI have been described elsewhere.

d. Data Sources
A complete list of sources used in the GBD 2016 analyses is available from the GBD 2016 Data Input Sources Tool (http://ghdx.healthdata.org/gbd-2016/data-input-sources).
eMethods 2. Outcomes estimations

Hospital and Claims Data

Hospital data plays a key role in nonfatal estimation for many CVD causes. GBD 2016 used both inpatient and outpatient administrative claims data. Detailed methods for claims data analysis from the United States were described previously. Briefly, aggregate data was derived from claims information in the Truvan Marketscan database of US private and public health insurance and were incorporated for the years of 2000, 2010, and 2012. Populations covered in each year were 3.3 million, 40.4 million and 40.8 million respectively. All ICD-9 four- or five-digit-coded diagnoses were mapped to GBD Causes. GBD conditions were categorized as “long-term” or “short-term” depending on cause duration. In a given year, for each individual in the claims data, a long-term case was defined as any mention in any diagnostic field associated with any claim, including inpatient and outpatient encounters. A short-term case was defined the same way, but assumed that claims within a condition-specific duration were the same case. A correction factor was applied to account for bias in health service encounter data over time, with the assumption that data from 2012 was most representative of the entire population.
eMethods 3. Fatal cause-specific estimation process

Fatal estimates for cardiovascular diseases were generated using CODEm. The CODEm methods approach has been described elsewhere. A list of covariates used in CODEm modeling for each CVD cause can be found in Appendix Table 3a.

ICD8, 9, and 10 codes were mapped to GBD causes. Nonspecific or intermediate causes of death inappropriately assigned as underlying causes of death were redistributed to appropriate underlying causes using an algorithm developed for the GBD study. After identifying nonspecific or intermediate codes (for example generalized atherosclerosis or left-sided heart failure), a regression model was used to realign these codes to biologically plausible targets. All-cause, all-cardiovascular, and cause-specific mortality was estimated using the Cause of Death Ensemble Model (CODEm) which produces cause-specific smoothed trends over time by age, sex, and state. Atrial fibrillation mortality was estimated with a separate natural history model described below. The CODCorrect algorithm was applied to ensure that cause-specific, cardiovascular, and all-cause deaths were consistent. Years of life lost (YLLs) were computed by multiplying the number of deaths from each cause in each age group by a global reference life expectancy at the average of age of death among those who died in the age group.
Nonfatal estimates for cardiovascular diseases were modeled using the DisMod-MR 2.1 platform. Morbidity modeling methods have been documented elsewhere². A list of covariates used in DisMod modeling for each CVD cause can be found in Appendix Table 3b. Appendix Table 4 includes a list of International Classification of Diseases (ICD) codes used in the extraction of hospital and claims data, mapped to specific cardiovascular diseases.
eMethods 5. Risk factor cause-specific estimation process

A set of behavioral, environmental and occupational, and metabolic risks that contribute to health outcomes were evaluated in GBD 2016. The Comparative Risk Assessment framework included 84 behavioral, environmental and occupational, and metabolic risks or risk clusters. Risk-outcome pairs were defined using the World Cancer Research Fund-defined criteria for convincing or probable evidence. Relative risk estimates were derived from published and unpublished data, including randomized trials and pooling of longitudinal cohort studies. Both Bayesian meta-regression and Gaussian spatiotemporal process regression models were used to produce consistent estimates of risk exposure.

Risks were organized in four hierarchical levels, each level being evaluated to determine whether risk combinations were additive, multiplicative, or shared common pathways for intervention. Through this method, we are able to quantify the proportion of risk attributable burden shared by risks or combination of risks. Additionally, this methodology allows for the measurement of potential overlaps between behavioral, environmental and occupational, and metabolic risks. The full risk factor estimation and evaluation methodology has been described elsewhere.

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
eReferences.

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Appendix Table 1. GATHER checklist of information that should be included in reports of global health estimates, with description of compliance and location of information for “The burden of cardiovascular diseases among US states, 1990–2016”.

<table>
<thead>
<tr>
<th>#</th>
<th>GATHER checklist item</th>
<th>Description of compliance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objectives and funding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Define the indicators, populations, and time periods for which estimates were made.</td>
<td>Narrative provided in paper and appendix describing indicators, definitions, and populations.</td>
<td>Manuscript; Methods Appendix, Section 1. GBD Overview</td>
</tr>
<tr>
<td>2</td>
<td>List the funding sources for the work.</td>
<td>Funding sources listed at end of paper.</td>
<td>Funding Sources</td>
</tr>
<tr>
<td></td>
<td>Data Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For all data inputs from multiple sources that are synthesized as part of the study:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant. | Interactive, online data source tool that provides metadata for data sources by component, geography, cause, risk, or impairment has been developed. | Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017: 390; 1211–59.
Online data tools: http://ghdx.healthdata.org/gbd-2016/data-input-sources |
|---|---|---|---|
| 6 | Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5). | Summary of known biases by cause included in methodological approaches sections of previously published appendices. | 1) GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017: 390; 1151–210.
<table>
<thead>
<tr>
<th>7</th>
<th>Describe and give sources for any other data inputs.</th>
<th>Included in list of all data sources provided on online data source tool.</th>
<th>Online data tools: http://ghdx.healthdata.org/gbd-2016/data-input-sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet as opposed to a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared due to ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.</td>
<td>Downloads of input data will be available through online tools, including data visualization tools and data query tools. Input data not available in tools will be made available upon request.</td>
<td>Online data tools http://www.healthdata.org/results/data-visualizations; http://ghdx.healthdata.org/; http://ghdx.healthdata.org/gbd-data-tool</td>
</tr>
</tbody>
</table>

Data analysis

| 10 | Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data | Detailed descriptions of all steps of the analysis were included in the methodological approaches sections of previously published | 1) GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017: 390;1151–210. |

3) GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and |
| | | | |
|---|---|---|
| **14** | State how analytic or statistical source code used to generate estimates can be accessed. | Access statement provided. | http://ghdx.healthdata.org/global-burden-disease-study-2016 |
| **15** | Provide published estimates in a file format from which data can be efficiently extracted. | GBD 2016 results are available through online data visualization tools, the Global Health Data Exchange, and the online data query tool (these tools are already available for GBD 2013 results). | Online data tools http://www.healthdata.org/results/data-visualizations; http://ghdx.healthdata.org/; http://ghdx.healthdata.org/gbd-data-tool |
| **16** | Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals). | Uncertainty intervals are provided with all results. | Main text; Online data tools http://www.healthdata.org/results/data-visualizations; http://ghdx.healthdata.org/; http://ghdx.healthdata.org/gbd-data-tool |

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Appendix Table 2. GBD 2016 Cause and Sequela Hierarchy for Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Causes and sequelae</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular diseases</td>
<td>2</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Rheumatic heart disease, without heart failure</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Acute myocardial infarction 3 to 28 days</td>
<td>5</td>
</tr>
<tr>
<td>Acute myocardial infarction first 2 days</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic ischemic heart disease following myocardial infarction</td>
<td>5</td>
</tr>
<tr>
<td>Mild angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Severe angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>3</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 1</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 2</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 3</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 4</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 5</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic chronic ischemic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 1</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 2</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 3</td>
<td>5</td>
</tr>
<tr>
<td>Condition</td>
<td>Severity Level</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Chronic ischemic stroke level 5</td>
<td>5</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke level 1</td>
<td>5</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke level 2</td>
<td>5</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke level 3</td>
<td>5</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke level 4</td>
<td>5</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke level 5</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic chronic hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke level 1</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke level 2</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke level 3</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke level 4</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke level 5</td>
<td>5</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to hypertensive heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to hypertensive heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to hypertensive heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Cardiomyopathy and myocarditis</td>
<td>3</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>4</td>
</tr>
<tr>
<td>Acute myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td>4</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>4</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Condition</td>
<td>Score</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Moderate heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic atrial fibrillation and flutter</td>
<td>5</td>
</tr>
<tr>
<td>Symptomatic atrial fibrillation and flutter</td>
<td>5</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>3</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic peripheral vascular disease</td>
<td>5</td>
</tr>
<tr>
<td>Symptomatic claudication due to peripheral vascular disease</td>
<td>5</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Mild other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Moderate other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Severe other cardiovascular diseases</td>
<td>5</td>
</tr>
</tbody>
</table>
Appendix Table 3a. GBD 2016 CODem model covariates by CVD Cause

<table>
<thead>
<tr>
<th>Cause Name</th>
<th>Covariate</th>
<th>Transformation</th>
<th>Level</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular diseases</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Fasting plasma glucose (mmol/L)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Indoor air pollution (all fuel types)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>SEV</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Improved water (proportion)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Malnutrition</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Sanitation (proportion with access)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>LDI</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>SDI</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Education (years per capita)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Disease</td>
<td>Exposure Variable</td>
<td>Transformation</td>
<td>Power</td>
<td>Scale</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Condition</td>
<td>Exposure Variable</td>
<td>Log</td>
<td>Degree</td>
<td>Scale</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Socio-demographic index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Socio-demographic index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Summary exposure variable, CMP</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Exposure Variable</td>
<td>Socio-demographic Index</td>
<td>Log</td>
<td>Coefficient</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Socio-demographic Index</td>
<td>none</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Systolic blood pressure (mm Hg)</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Healthcare access and quality index</td>
<td>none</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Lag distributed income per capita (I$)</td>
<td>log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Socio-demographic Index</td>
<td>none</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Systolic blood pressure (mm Hg)</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Smoking prevalence</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Body mass index (kg/m2)</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Healthcare access and quality index</td>
<td>none</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Lag distributed income per capita (I$)</td>
<td>log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Socio-demographic Index</td>
<td>none</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Healthcare Access and Quality Index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Cumulative cigarettes (10 yrs)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Trans fatty acid (percent)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Condition</td>
<td>Exposure Variable</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Mean body mass index (kg/m^2)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Improved water (proportion)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Sanitation (proportion with access)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Trans fatty acid (percent)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Fasting plasma glucose (mmol/L)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Indoor air pollution (all fuel types)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Outdoor air pollution (PM_{2.5})</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Disease Category</td>
<td>Variable Description</td>
<td>Transformation</td>
<td>Power</td>
<td>Position</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cause</td>
<td>Covariate Name</td>
<td>Measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Diagnostic blood sample (troponin)</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>First ever MI</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Log-transformed age-standardized SEV scalar: IHD</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Non-fatal MI</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>All MarketScan, year 2000</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>All MarketScan, year 2010</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>Log-transformed age-standardized SEV scalar: CMP</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>Log-transformed age-standardized SEV scalar: IHD</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, 50 to 64</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, 65 plus</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, less than 50</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, 50 to 64</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, 65 plus</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, less than 50</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>All MarketScan, year 2000</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>All MarketScan, year 2010</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>Hospital data</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>Log-transformed age-standardized SEV scalar: A Fib</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>Log-transformed SEV scalar: Isch Stroke</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Hospital data</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Inpatient-only Marketscan, year 2000</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Inpatient-only Marketscan, year 2010</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>LDI (I$per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Log-transformed age-standardized SEV scalar: endocarditis</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Any stroke</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Any stroke</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Hospital data</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Description</td>
<td>SEV Measure</td>
<td>Incidence/Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Log-transformed age-standardized SEV scalar: hemorrhagic stroke</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Any stroke</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Hospital data</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Log-transformed age-standardized SEV scalar: ischemic stroke</td>
<td>Incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Envelope</td>
<td>All MarketScan, year 2000</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Envelope</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>Log-transformed age-standardised SEV scalar: CVD</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>Healthcare access and quality index</td>
<td>Proportion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>Log-transformed age-standardized SEV scalar: PVD</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Endemic</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Endemic</td>
<td>Log-transformed age-standardized SEV scalar: RHD</td>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>All Marketscan, year 2000</td>
<td>Study-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>All Marketscan, year 2010</td>
<td>Study-level’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause</td>
<td>ICD10 Used in Hospital/Claims Analyses</td>
<td>ICD9 Used in Hospital/Claims Analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>101-101.9, 102.0, 105-109.9</td>
<td>391-391.9, 392.0, 393-398.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>I20-I21.6, I21.9-I25.9, Z82.4-Z82.48</td>
<td>410-414.9, V17.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>G45-G46.8, I60-164, I64.1, I65-169.98, Z82.3</td>
<td>430-439.6, V12.54, V17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>G45-G46.8, I63-163.9, I65-166.9, I67.2-167.848, 169.3-169.4</td>
<td>433-435.9, 437.0-437.2, 437.4-437.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>I60-I62.9, I67.0-167.1, I69.0-169.298</td>
<td>430-432.9, 437.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>I11-I11.2, I11.9</td>
<td>402-402.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy and myocarditis</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, I42-I43.8, I51.4-I51.6</td>
<td>074.2, 074.23, 422-422.99, 425-425.5, 425.7-425.9, 429.0-429.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, I51.4-I51.6</td>
<td>074.2, 074.23, 422-422.99, 429.0-429.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td>I42.6</td>
<td>425.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>I42.0-I42.5, I42.7-143.8</td>
<td>425.0-425.4, 425.7-425.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>I48-I48.92</td>
<td>427.3-427.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>I70.2-I70.92, I73-173.9</td>
<td>440.2-440.29, 440.4-440.9, 443-443.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>I33.21, I33.133.9, I38-138.0, I39-139.9</td>
<td>074.22, 421-421.9, 424, 424.4-424.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>130-132.8, 134-137.9, I51-151.3, I51.7-152.8, I72-172.9, I77-I83.93, I86-189.0, I89.9, I95.0-195.1, I98, I98.8-199.9, K75.1</td>
<td>074.21, 417-417.9, 420-420.99, 423-423.9, 424.0-424.3, 429, 429.2-429.9, 442-442.9, 447-454.9, 456, 456.3-457, 457.1, 457.8-458.1, 459-459.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBD cause name</td>
<td>Citation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 1980
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Atrial fibrillation and flutter

Atrial fibrillation and flutter

Atrial fibrillation and flutter

Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM. Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol. 1994; 74(3): 236-41

Atrial fibrillation and flutter

Atrial fibrillation and flutter

Upshaw CB. Reduced prevalence of atrial fibrillation in black patients compared with white patients attending an urban hospital: an electrocardiographic study. J Natl Med Assoc. 2002; 94(4): 204-8

Atrial fibrillation and flutter

Atrial fibrillation and flutter

National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Atrial fibrillation and flutter

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.

Downloaded From: by a Non-Human Traffic (NHT) User on 12/12/2018
<table>
<thead>
<tr>
<th>Atrial fibrillation and flutter</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Source</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI (2011)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2016. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2017. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2018. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2019. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2020. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>United States National Health Interview Survey 2021. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Source</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1998-2002</td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
<td>2010</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
<td>2011</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
<td>2013</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td>2018</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td>2018</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td>2018</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Hemorrhagic Stroke</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1981. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2015</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2016</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2005-2006. Data and Information Sciences Center, University of Wisconsin-Madison [distributor]</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Health and Retirement Study, (Biennial 2000) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Child Health and Human Development, Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2011</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Health and Retirement Study, (Biennial 2006) public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Child Health and Human Development, Ann Arbor, MI, (2014)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1988-1992</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1993-1997</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998-2002</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1985-1992</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1986-1996</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1987-1997</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1988-2002</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1989-2003</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1990-2004</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1991-2005</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1992-2006</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1993-2007</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1994-2008</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1995-2009</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1996-2010</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1997-2011</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998-2012</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1999-2013</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2000-2014</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2001-2015</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2002-2016</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2003-2017</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2004-2018</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2011-2012</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2012-2013</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2013-2014</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2014-2015</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2015-2016</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2016-2017</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2017-2018</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology*.

Downloaded From: by a Non-Human Traffic (NHT) User on 12/12/2018
<table>
<thead>
<tr>
<th>Disease</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2007</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2006</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2015</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2008</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2006</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2001</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2006</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1982</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>2009</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>Tunstall-Pedoe H, Kuulasmaa K, M.A.ha¨n¨en M, Tolonen H, Ruokokoski E. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA Project populations. Lancet, 1999; 353(9146): 1547-57</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1988-1992
Ischemic stroke	Health and Retirement Study, (Biennial 2012) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2015)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	Health and Retirement Study, (Biennial 1998) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2014)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Health and Retirement Study, (Biennial 2002) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998-2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.

Ischemic stroke | United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2014

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | Health and Retirement Study. (Biennial 2010) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2014

Ischemic stroke | Truven Health Analytics. United States MarketScan Commercial Claims and Encounters Database 2010. Ann Arbor, United States: Truven Health Analytics

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | Health and Retirement Study. (Biennial 2000) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2011

Ischemic stroke | Health and Retirement Study. (Biennial 2004) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2013

Ischemic stroke | Health and Retirement Study. (Biennial 2006) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2014

Ischemic stroke | Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, 2011

Ischemic stroke | Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, 2011

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Ischemic stroke | National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Ischemic stroke

Ischemic stroke
National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 2012.

Ischemic stroke

Ischemic stroke

Ischemic stroke

Ischemic stroke

Ischemic stroke
National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1990.

Ischemic stroke

Ischemic stroke

Ischemic stroke

Ischemic stroke
Health and Retirement Study, (Biennial 1992) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)

Ischemic stroke
Health and Retirement Study, (Biennial 1996) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)

Myocarditis

Myocarditis

Myocarditis

Myocarditis

Myocarditis

Myocarditis
Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics.

Myocarditis

Myocarditis

Myocarditis

Myocarditis

Myocarditis
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1981. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2013-2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2007-2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td></td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 1999-2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>Truven Health Analytics, United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Truven Health Analytics, United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Truven Health Analytics, United States MarketScan Claims and Medicare Data - 2005. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1977. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
|------------------------|---|

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Rheumatic heart disease

National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

Rheumatic heart disease

Rheumatic heart disease

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
eTable 1. Disability-adjusted life-years (DALYs) and percentage change of DALYs for all cardiovascular causes by US state, total number and age-standardized rate for 1990, 2006, and 2016 for both sexes

<table>
<thead>
<tr>
<th>State</th>
<th>Number of DALYS (95% UI)</th>
<th>Percentage change in DALYs (95% UI)</th>
<th>Age-standardized DALY rates per 100,000 persons (95% UI)</th>
<th>Percentage change in DALY rates (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>1,567 (1,098 to 1,985)</td>
<td>2,054 (1,717 to 3,050)</td>
<td>2,418 (1,917 to 3,636)</td>
<td>.56 (.17 to 1.48)</td>
</tr>
<tr>
<td>Alaska</td>
<td>193 (122 to 230)</td>
<td>281 (206 to 374)</td>
<td>370 (266 to 488)</td>
<td>.95 (.49 to 1.71)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,113 (893 to 1,420)</td>
<td>2,234 (1,835 to 3,287)</td>
<td>2,641 (2,118 to 4,230)</td>
<td>1.39 (.85 to 2.81)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>844 (702 to 1,128)</td>
<td>1,121 (925 to 1,747)</td>
<td>1,300 (1,009 to 2,241)</td>
<td>.54 (.18 to 1.3)</td>
</tr>
<tr>
<td>California</td>
<td>13,915 (6,351 to 18,037)</td>
<td>15,691 (9,658 to 18,450)</td>
<td>18,886 (11,218 to 23,783)</td>
<td>.42 (.04 to 1.52)</td>
</tr>
<tr>
<td>Colorado</td>
<td>944 (738 to 1,225)</td>
<td>1,483 (1,200 to 2,399)</td>
<td>1,933 (1,502 to 3,420)</td>
<td>1.05 (.58 to 2.06)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,233 (861 to 1,464)</td>
<td>1,390 (1,052 to 1,738)</td>
<td>1,430 (1,124 to 2,072)</td>
<td>.18 (-.12 to .92)</td>
</tr>
<tr>
<td>Delaware</td>
<td>330 (185 to 401)</td>
<td>433 (295 to 510)</td>
<td>496 (366 to 598)</td>
<td>.54 (.2 to 1.24)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>612 (201 to 883)</td>
<td>441 (234 to 582)</td>
<td>428 (259 to 550)</td>
<td>-.25 (-.49 to .45)</td>
</tr>
<tr>
<td>State</td>
<td>Florida</td>
<td>Georgia</td>
<td>Hawaii</td>
<td>Idaho</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>6,955</td>
<td>2,331</td>
<td>615</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>(3,459 to 8,650)</td>
<td>(1,408 to 2,961)</td>
<td>(260 to 796)</td>
<td>(222 to 374)</td>
</tr>
<tr>
<td></td>
<td>9,864</td>
<td>4,833</td>
<td>755</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>(6,314 to 11,596)</td>
<td>(3,203 to 5,806)</td>
<td>(393 to 937)</td>
<td>(325 to 687)</td>
</tr>
<tr>
<td></td>
<td>12,041</td>
<td>6,067</td>
<td>885</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td>(7,937 to 14,778)</td>
<td>(4,095 to 7,591)</td>
<td>(475 to 1,117)</td>
<td>(417 to 953)</td>
</tr>
<tr>
<td></td>
<td>.78</td>
<td>1.67</td>
<td>.49</td>
<td>.98</td>
</tr>
<tr>
<td></td>
<td>(.37 to 1.72)</td>
<td>(.7 to 3.15)</td>
<td>(.16 to 1.07)</td>
<td>(.49 to 1.86)</td>
</tr>
<tr>
<td></td>
<td>.23</td>
<td>.26</td>
<td>.18</td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td>(.03 to .45)</td>
<td>(.02 to .55)</td>
<td>(-.01 to .37)</td>
<td>(.13 to .6)</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>37</td>
<td>53</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(22 to 53)</td>
<td>(22 to 47)</td>
<td>(22 to 68)</td>
<td>(22 to 37)</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>48</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(27 to 48)</td>
<td>(31 to 58)</td>
<td>(24 to 57)</td>
<td>(19 to 41)</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>46</td>
<td>47</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(27 to 48)</td>
<td>(32 to 58)</td>
<td>(25 to 59)</td>
<td>(20 to 44)</td>
</tr>
<tr>
<td></td>
<td>-.05</td>
<td>.29</td>
<td>-.08</td>
<td>-.04</td>
</tr>
<tr>
<td></td>
<td>(-.27 to .49)</td>
<td>(-.14 to 1.04)</td>
<td>(-.29 to .26)</td>
<td>(-.27 to .38)</td>
</tr>
<tr>
<td></td>
<td>-.03</td>
<td>-.03</td>
<td>.03</td>
<td>.07</td>
</tr>
<tr>
<td></td>
<td>(-.18 to .16)</td>
<td>(-.23 to .2)</td>
<td>(.08 to .19)</td>
<td>(.11 to .26)</td>
</tr>
<tr>
<td>State</td>
<td>Year 1 Mean (Min to Max)</td>
<td>Year 2 Mean (Min to Max)</td>
<td>% Change (Lower to Upper)</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Michigan</td>
<td>3,556 (2,223 to 4,345)</td>
<td>5,287 (3,571 to 6,206)</td>
<td>.6 (.23 to 1.37)</td>
<td>.06 (-.13 to .31)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,184 (957 to 1,563)</td>
<td>1,684 (1,191 to 2,794)</td>
<td>.81 (.34 to 1.74)</td>
<td>.27 (.08 to .5)</td>
</tr>
<tr>
<td>Missouri</td>
<td>1,124 (694 to 1,366)</td>
<td>1,502 (1,245 to 2,056)</td>
<td>.55 (.14 to 1.45)</td>
<td>.13 (-.07 to .36)</td>
</tr>
<tr>
<td>Montana</td>
<td>258 (201 to 319)</td>
<td>313 (251 to 511)</td>
<td>.16 (-.17 to 1.03)</td>
<td>0 (-.19 to .26)</td>
</tr>
<tr>
<td>Nevada</td>
<td>518 (333 to 666)</td>
<td>1,175 (910 to 1,436)</td>
<td>2.5 (1.41 to 4.21)</td>
<td>.52 (.19 to .86)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>379 (291 to 475)</td>
<td>463 (383 to 701)</td>
<td>.51 (.16 to 1.25)</td>
<td>.23 (.05 to .43)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>4,058 (2,216 to 4,979)</td>
<td>4,786 (2,840 to 5,654)</td>
<td>.13 (-.14 to 1.03)</td>
<td>-.06 (-.24 to .17)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>526 (370 to 628)</td>
<td>792 (652 to 1,161)</td>
<td>.69 (.24 to 1.75)</td>
<td>.11 (-.1 to .37)</td>
</tr>
<tr>
<td>New York</td>
<td>6,511 (4,907 to 8,600)</td>
<td>6,689 (5,408 to 10,422)</td>
<td>1 (-.22 to 1.06)</td>
<td>.05 (-.14 to .28)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3,256 (1,636 to 4,031)</td>
<td>4,743 (2,925 to 5,572)</td>
<td>.87 (.44 to 2.22)</td>
<td>.25 (.05 to .58)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>195 (154 to 266)</td>
<td>190 (152 to 328)</td>
<td>.24 (-.08 to .83)</td>
<td>.27 (.03 to .53)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>HW (Min to Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>2,958 (2,181 to 4,457)</td>
<td>4,361 (3,682 to 6,044)</td>
<td>5,781 (4,579 to 7,565)</td>
<td>.99 (.38 to 1.68)</td>
<td>.33 (.11 to .58)</td>
<td>.25 (18 to 37)</td>
<td>.31 (26 to 43)</td>
<td>.37 (29 to 48)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,033 (843 to 1,359)</td>
<td>1,273 (1,018 to 2,149)</td>
<td>1,707 (1,304 to 2,996)</td>
<td>.65 (.25 to 1.69)</td>
<td>.34 (.13 to .6)</td>
<td>.30 (24 to 40)</td>
<td>.29 (24 to 50)</td>
<td>.35 (26 to 61)</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,028 (785 to 1,229)</td>
<td>1,483 (1,128 to 2,195)</td>
<td>2,043 (1,555 to 3,184)</td>
<td>1 (.48 to 2.02)</td>
<td>.38 (.15 to .62)</td>
<td>.32 (25 to 38)</td>
<td>.32 (24 to 47)</td>
<td>.35 (24 to 55)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>3,840 (2,567 to 5,435)</td>
<td>4,185 (3,416 to 6,266)</td>
<td>5,218 (4,204 to 7,441)</td>
<td>.38 (.07 to .99)</td>
<td>.25 (.06 to .52)</td>
<td>.27 (19 to 38)</td>
<td>.26 (21 to 39)</td>
<td>.28 (23 to 42)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>350 (278 to 468)</td>
<td>340 (271 to 566)</td>
<td>375 (282 to 650)</td>
<td>.07 (-.22 to .66)</td>
<td>.1 (-.08 to .32)</td>
<td>.30 (24 to 41)</td>
<td>.25 (20 to 42)</td>
<td>.26 (19 to 44)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,472 (871 to 1,793)</td>
<td>2,237 (1,665 to 2,654)</td>
<td>2,620 (2,075 to 3,304)</td>
<td>.82 (.38 to 1.83)</td>
<td>.18 (-.04 to .42)</td>
<td>.41 (24 to 49)</td>
<td>.41 (31 to 49)</td>
<td>.39 (31 to 50)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>193 (157 to 287)</td>
<td>211 (161 to 393)</td>
<td>267 (193 to 517)</td>
<td>.37 (.02 to 1.06)</td>
<td>.26 (.05 to .51)</td>
<td>.25 (21 to 38)</td>
<td>.22 (17 to 41)</td>
<td>.24 (17 to 46)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>2,157 (1,370 to 2,558)</td>
<td>3,290 (2,575 to 4,269)</td>
<td>4,787 (3,326 to 6,388)</td>
<td>.127 (.72 to 2.76)</td>
<td>.46 (.19 to .71)</td>
<td>.40 (26 to 48)</td>
<td>.44 (34 to 56)</td>
<td>.54 (38 to 71)</td>
</tr>
<tr>
<td>Texas</td>
<td>4,453 (3,305 to 5,968)</td>
<td>6,377 (5,237 to 10,016)</td>
<td>7,350 (5,498 to 13,956)</td>
<td>.66 (.19 to 1.97)</td>
<td>.14 (-.09 to .45)</td>
<td>.27 (20 to 36)</td>
<td>.26 (21 to 40)</td>
<td>.22 (17 to 42)</td>
</tr>
<tr>
<td>Utah</td>
<td>356 (285 to 466)</td>
<td>502 (397 to 845)</td>
<td>703 (546 to 1,232)</td>
<td>.97 (.5 to 1.9)</td>
<td>.9 (.2 to .4)</td>
<td>.25 (20 to 33)</td>
<td>.21 (17 to 36)</td>
<td>.23 (18 to 40)</td>
</tr>
<tr>
<td>Vermont</td>
<td>205 (141 to 245)</td>
<td>222 (178 to 318)</td>
<td>260 (206 to 388)</td>
<td>.29 (-.02 to .97)</td>
<td>.17 (-.01 to .38)</td>
<td>.35 (24 to 42)</td>
<td>.27 (22 to 38)</td>
<td>.28 (22 to 41)</td>
</tr>
<tr>
<td>Virginia</td>
<td>2,334 (1,506 to 2,813)</td>
<td>3,188 (2,496 to 3,868)</td>
<td>4,307 (2,914 to 5,450)</td>
<td>.88 (.36 to 1.89)</td>
<td>.35 (.1 to .62)</td>
<td>.37 (23 to 44)</td>
<td>.34 (27 to 42)</td>
<td>.38 (26 to 48)</td>
</tr>
<tr>
<td>Washington</td>
<td>1,882 (1,227 to 2,248)</td>
<td>2,757 (1,911 to 3,564)</td>
<td>3,559 (2,369 to 4,614)</td>
<td>.91 (.48 to 1.76)</td>
<td>.29 (.11 to .51)</td>
<td>.38 (24 to 45)</td>
<td>.36 (25 to 47)</td>
<td>.37 (25 to 48)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>827 (569 to 979)</td>
<td>996 (803 to 1,315)</td>
<td>1,106 (895 to 1,532)</td>
<td>.36 (.04 to .109)</td>
<td>.11 (-.07 to .3)</td>
<td>39 (27 to 46)</td>
<td>40 (33 to 53)</td>
<td>42 (34 to 60)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1,713 (1,191 to 2,019)</td>
<td>2,679 (1,658 to 3,346)</td>
<td>2,990 (1,936 to 4,194)</td>
<td>.76 (.32 to 1.74)</td>
<td>.12 (-.06 to .34)</td>
<td>33 (23 to 38)</td>
<td>39 (24 to 49)</td>
<td>38 (25 to 52)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>118 (97 to 169)</td>
<td>153 (115 to 272)</td>
<td>190 (135 to 356)</td>
<td>.59 (.18 to 1.37)</td>
<td>.24 (.03 to .49)</td>
<td>26 (22 to 38)</td>
<td>24 (18 to 42)</td>
<td>25 (18 to 47)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aortic aneurysm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
</tr>
<tr>
<td>Alaska</td>
</tr>
<tr>
<td>Arizona</td>
</tr>
<tr>
<td>Arkansas</td>
</tr>
<tr>
<td>California</td>
</tr>
<tr>
<td>Colorado</td>
</tr>
<tr>
<td>Connecticut</td>
</tr>
<tr>
<td>Delaware</td>
</tr>
<tr>
<td>District of Columbia</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2013 Estimate</th>
<th>95% CI</th>
<th>2012 Estimate</th>
<th>95% CI</th>
<th>ΔYLD CI</th>
<th>YLD CI</th>
<th>ΔYLD CI</th>
<th>YLD CI</th>
<th>ΔYLD CI</th>
<th>YLD CI</th>
<th>ΔYLD CI</th>
<th>YLD CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>18,486 (17,030 to 19,982)</td>
<td>15,746 (14,608 to 16,905)</td>
<td>15,633 (13,889 to 17,588)</td>
<td>-.15 (-.26 to -.03)</td>
<td>-.01 (-.13 to .12)</td>
<td>94 (86 to 102)</td>
<td>60 (56 to 64)</td>
<td>48 (42 to 55)</td>
<td>-.49 (-.55 to -.41)</td>
<td>-.19 (-.3 to -.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>6,012 (5,532 to 6,565)</td>
<td>6,072 (5,588 to 6,647)</td>
<td>6,442 (5,588 to 7,450)</td>
<td>.07 (-.08 to .25)</td>
<td>.06 (-.08 to .23)</td>
<td>94 (87 to 103)</td>
<td>62 (58 to 68)</td>
<td>50 (44 to 58)</td>
<td>-.47 (-.54 to -.38)</td>
<td>-.19 (-.3 to -.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,124 (1,038 to 1,216)</td>
<td>1,077 (1,002 to 1,156)</td>
<td>1,125 (1,017 to 1,248)</td>
<td>0 (-.11 to .14)</td>
<td>.05 (-.06 to .17)</td>
<td>95 (88 to 103)</td>
<td>62 (58 to 67)</td>
<td>54 (49 to 60)</td>
<td>-.43 (-.5 to -.36)</td>
<td>-.14 (-.23 to -.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>1,163 (1,069 to 1,263)</td>
<td>1,110 (1,015 to 1,200)</td>
<td>1,230 (1,079 to 1,408)</td>
<td>.06 (-.1 to .23)</td>
<td>.11 (-.05 to .29)</td>
<td>104 (95 to 113)</td>
<td>65 (59 to 70)</td>
<td>55 (48 to 63)</td>
<td>-.47 (-.55 to -.38)</td>
<td>-.16 (-.28 to -.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>12,406 (11,506 to 13,353)</td>
<td>9,098 (8,460 to 9,785)</td>
<td>8,658 (7,804 to 9,647)</td>
<td>-.3 (-.38 to -.21)</td>
<td>-.05 (-.15 to .07)</td>
<td>94 (87 to 101)</td>
<td>60 (56 to 65)</td>
<td>50 (45 to 56)</td>
<td>-.47 (-.53 to -.4)</td>
<td>-.17 (-.26 to -.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>6,732 (6,237 to 7,288)</td>
<td>5,498 (5,101 to 5,937)</td>
<td>5,547 (4,828 to 6,341)</td>
<td>-.17 (-.3 to -.05)</td>
<td>.01 (-.14 to .16)</td>
<td>104 (97 to 113)</td>
<td>71 (66 to 77)</td>
<td>62 (54 to 71)</td>
<td>-.41 (-.49 to -.31)</td>
<td>-.13 (-.26 to 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>3,536 (3,266 to 3,811)</td>
<td>2,520 (2,330 to 2,716)</td>
<td>2,437 (2,173 to 2,706)</td>
<td>-.31 (-.4 to -.21)</td>
<td>-.03 (-.14 to .09)</td>
<td>93 (86 to 101)</td>
<td>61 (56 to 66)</td>
<td>53 (47 to 60)</td>
<td>-.43 (-.5 to -.35)</td>
<td>-.13 (-.23 to -.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>2,910 (2,676 to 3,152)</td>
<td>2,217 (2,044 to 2,389)</td>
<td>2,156 (1,871 to 2,445)</td>
<td>-.26 (-.37 to -.13)</td>
<td>-.03 (-.16 to .12)</td>
<td>94 (87 to 102)</td>
<td>64 (59 to 69)</td>
<td>55 (47 to 62)</td>
<td>-.42 (-.51 to -.32)</td>
<td>-.14 (-.27 to 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>4,515 (4,170 to 4,840)</td>
<td>3,731 (3,478 to 4,024)</td>
<td>3,804 (3,405 to 4,214)</td>
<td>-.16 (-.26 to -.05)</td>
<td>.02 (-.1 to .15)</td>
<td>105 (97 to 112)</td>
<td>71 (66 to 77)</td>
<td>62 (55 to 69)</td>
<td>-.41 (-.48 to -.33)</td>
<td>-.13 (-.23 to -.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>4,236 (3,895 to 4,610)</td>
<td>3,310 (3,051 to 3,608)</td>
<td>3,373 (3,043 to 3,818)</td>
<td>-.2 (-.29 to -.1)</td>
<td>.02 (-.09 to .14)</td>
<td>96 (88 to 105)</td>
<td>65 (60 to 71)</td>
<td>55 (50 to 63)</td>
<td>-.42 (-.49 to -.35)</td>
<td>-.15 (-.24 to -.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>1,757 (1,627 to 1,904)</td>
<td>1,293 (1,191 to 1,397)</td>
<td>1,258 (1,136 to 1,400)</td>
<td>-.28 (-.37 to -.18)</td>
<td>-.03 (-.14 to .1)</td>
<td>116 (108 to 126)</td>
<td>68 (63 to 74)</td>
<td>57 (51 to 63)</td>
<td>-.51 (-.57 to -.45)</td>
<td>-.16 (-.26 to -.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>4,778 (4,390 to 5,215)</td>
<td>3,638 (3,381 to 3,974)</td>
<td>3,529 (3,151 to 3,976)</td>
<td>-.26 (-.35 to -.17)</td>
<td>-.03 (-.13 to .08)</td>
<td>95 (88 to 104)</td>
<td>54 (50 to 60)</td>
<td>44 (39 to 49)</td>
<td>-.54 (-.6 to -.49)</td>
<td>-.2 (-.28 to -.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>6,894 (6,358 to 7,421)</td>
<td>4,426 (4,107 to 4,764)</td>
<td>4,041 (3,647 to 4,462)</td>
<td>-.41 (-.49 to -.33)</td>
<td>-.09 (-.18 to .02)</td>
<td>92 (85 to 99)</td>
<td>52 (48 to 56)</td>
<td>41 (37 to 46)</td>
<td>-.55 (-.61 to -.49)</td>
<td>-.2 (-.29 to -.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Death Yrs</td>
<td>Death Yrs Low</td>
<td>Death Yrs High</td>
<td>Percent Change</td>
<td>Percent Change Low</td>
<td>Percent Change High</td>
<td>Death Rate</td>
<td>Death Rate Low</td>
<td>Death Rate High</td>
<td>Difference</td>
<td>Difference Low</td>
<td>Difference High</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Michigan</td>
<td>10,544</td>
<td>8,731</td>
<td>8,266</td>
<td>-0.22</td>
<td>-0.3 to -0.12</td>
<td>-0.15 to 0.05</td>
<td>102</td>
<td>94 to 109</td>
<td>69 to 74</td>
<td>-0.43</td>
<td>-0.49 to -0.36</td>
<td>-0.25 to -0.07</td>
</tr>
<tr>
<td>Minnesota</td>
<td>5,224</td>
<td>4,017</td>
<td>4,058</td>
<td>-0.22</td>
<td>-0.32 to -0.11</td>
<td>-0.11 to 0.14</td>
<td>103</td>
<td>95 to 112</td>
<td>63 to 68</td>
<td>-0.49</td>
<td>-0.56 to -0.42</td>
<td>-0.27 to -0.06</td>
</tr>
<tr>
<td>Mississippi</td>
<td>2,641</td>
<td>2,414</td>
<td>2,431</td>
<td>-0.08</td>
<td>-0.22 to -0.07</td>
<td>-0.14 to 0.16</td>
<td>91</td>
<td>84 to 99</td>
<td>70 to 76</td>
<td>-0.33</td>
<td>-0.43 to -0.22</td>
<td>-0.26 to 0</td>
</tr>
<tr>
<td>Missouri</td>
<td>6,313</td>
<td>4,711</td>
<td>4,661</td>
<td>-0.26</td>
<td>-0.34 to -0.18</td>
<td>-0.11 to 0.1</td>
<td>98</td>
<td>91 to 105</td>
<td>63 to 68</td>
<td>-0.44</td>
<td>-0.5 to -0.38</td>
<td>-0.22 to -0.03</td>
</tr>
<tr>
<td>Montana</td>
<td>976</td>
<td>831</td>
<td>854</td>
<td>-0.12</td>
<td>-0.26 to -0.03</td>
<td>-0.11 to 0.19</td>
<td>100</td>
<td>92 to 109</td>
<td>64 to 70</td>
<td>-0.46</td>
<td>-0.54 to -0.37</td>
<td>-0.27 to 0</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,858</td>
<td>1,341</td>
<td>1,341</td>
<td>-0.28</td>
<td>-0.36 to -0.18</td>
<td>-0.11 to 0.12</td>
<td>93</td>
<td>86 to 101</td>
<td>59 to 64</td>
<td>-0.44</td>
<td>-0.51 to -0.37</td>
<td>-0.23 to 0</td>
</tr>
<tr>
<td>Nevada</td>
<td>1,339</td>
<td>1,903</td>
<td>2,129</td>
<td>0.59</td>
<td>0.39 to 0.8</td>
<td>0.12 to 0.26</td>
<td>106</td>
<td>97 to 117</td>
<td>61 to 73</td>
<td>-0.49</td>
<td>-0.56 to -0.43</td>
<td>-0.28 to 0</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,224</td>
<td>952</td>
<td>974</td>
<td>-0.2</td>
<td>-0.3 to -0.09</td>
<td>-0.09 to 0.15</td>
<td>103</td>
<td>95 to 112</td>
<td>57 to 61</td>
<td>-0.54</td>
<td>-0.59 to -0.48</td>
<td>-0.26 to 0</td>
</tr>
<tr>
<td>New Jersey</td>
<td>8,894</td>
<td>5,930</td>
<td>5,309</td>
<td>-0.4</td>
<td>-0.48 to -0.32</td>
<td>-0.2 to 0.1</td>
<td>93</td>
<td>86 to 100</td>
<td>50 to 57</td>
<td>-0.55</td>
<td>-0.61 to -0.49</td>
<td>-0.24 to -0.11</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,323</td>
<td>1,334</td>
<td>1,419</td>
<td>0.07</td>
<td>0.09 to 0.25</td>
<td>0.08 to 0.23</td>
<td>85</td>
<td>78 to 93</td>
<td>56 to 60</td>
<td>-0.42</td>
<td>-0.51 to -0.32</td>
<td>-0.24 to -0.02</td>
</tr>
<tr>
<td>New York</td>
<td>19,121</td>
<td>12,640</td>
<td>11,313</td>
<td>-0.41</td>
<td>-0.49 to -0.32</td>
<td>-0.22 to 0.03</td>
<td>89</td>
<td>82 to 95</td>
<td>52 to 56</td>
<td>-0.54</td>
<td>-0.6 to -0.46</td>
<td>-0.31 to -0.08</td>
</tr>
<tr>
<td>North Carolina</td>
<td>7,266</td>
<td>6,664</td>
<td>6,911</td>
<td>-0.05</td>
<td>-0.15 to 0.07</td>
<td>-0.07 to 0.16</td>
<td>96</td>
<td>90 to 104</td>
<td>61 to 66</td>
<td>-0.48</td>
<td>-0.54 to -0.42</td>
<td>-0.28 to 0</td>
</tr>
<tr>
<td>North Dakota</td>
<td>727</td>
<td>518</td>
<td>510</td>
<td>-0.3</td>
<td>-0.39 to -0.19</td>
<td>-0.15 to 0.12</td>
<td>90</td>
<td>82 to 98</td>
<td>59 to 64</td>
<td>-0.43</td>
<td>-0.51 to -0.34</td>
<td>-0.25 to 0</td>
</tr>
<tr>
<td>State</td>
<td>Residents (±% of residents)</td>
<td>(±% of residents)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>13,687 (12,719 to 14,669)</td>
<td>10,188 (9,529 to 10,869)</td>
<td>9,727 (8,736 to 10,780)</td>
<td>-0.29 (-0.37 to -0.19)</td>
<td>-0.04 (-0.14 to -0.07)</td>
<td>105 (98 to 113)</td>
<td>68 (64 to 73)</td>
<td>59 (52 to 65)</td>
<td>-0.44 (-0.51 to -0.36)</td>
<td>-0.14 (-0.23 to -0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>3,448 (3,201 to 3,713)</td>
<td>3,065 (2,872 to 3,280)</td>
<td>3,091 (2,796 to 3,407)</td>
<td>-0.1 (-0.21 to -0.02)</td>
<td>0.01 (-0.1 to 0.13)</td>
<td>90 (83 to 97)</td>
<td>68 (64 to 73)</td>
<td>60 (54 to 66)</td>
<td>-0.33 (-0.41 to -0.24)</td>
<td>-0.12 (-0.22 to -0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>3,534 (3,261 to 3,815)</td>
<td>2,968 (2,754 to 3,189)</td>
<td>3,063 (2,761 to 3,369)</td>
<td>-0.13 (-0.24 to -0.02)</td>
<td>0.03 (-0.08 to 0.15)</td>
<td>100 (92 to 108)</td>
<td>62 (57 to 66)</td>
<td>51 (46 to 56)</td>
<td>-0.49 (-0.55 to -0.43)</td>
<td>-0.18 (-0.27 to -0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>16,340 (15,184 to 17,526)</td>
<td>11,270 (10,573 to 12,031)</td>
<td>10,481 (9,496 to 11,539)</td>
<td>-0.36 (-0.43 to -0.28)</td>
<td>-0.07 (-0.16 to 0.04)</td>
<td>100 (93 to 107)</td>
<td>63 (59 to 67)</td>
<td>54 (49 to 59)</td>
<td>-0.46 (-0.52 to -0.39)</td>
<td>-0.15 (-0.24 to -0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,179 (1,088 to 1,276)</td>
<td>779 (713 to 846)</td>
<td>714 (629 to 814)</td>
<td>-0.39 (-0.48 to -0.3)</td>
<td>-0.08 (-0.21 to 0.05)</td>
<td>89 (82 to 97)</td>
<td>54 (50 to 59)</td>
<td>46 (40 to 52)</td>
<td>-0.49 (-0.56 to -0.4)</td>
<td>-0.16 (-0.28 to -0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>3,990 (3,672 to 4,326)</td>
<td>3,795 (3,508 to 4,099)</td>
<td>4,187 (3,693 to 4,752)</td>
<td>0.05 (-0.1 to 0.21)</td>
<td>0.1 (-0.04 to 0.26)</td>
<td>106 (98 to 115)</td>
<td>70 (65 to 76)</td>
<td>60 (53 to 67)</td>
<td>-0.44 (-0.52 to -0.35)</td>
<td>-0.15 (-0.26 to -0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>908 (830 to 987)</td>
<td>693 (633 to 752)</td>
<td>706 (621 to 794)</td>
<td>-0.22 (-0.34 to -0.09)</td>
<td>0.02 (-0.11 to 0.17)</td>
<td>102 (93 to 111)</td>
<td>67 (61 to 72)</td>
<td>58 (51 to 66)</td>
<td>-0.43 (-0.51 to -0.33)</td>
<td>-0.12 (-0.24 to -0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>5,109 (4,699 to 5,538)</td>
<td>4,731 (4,404 to 5,071)</td>
<td>4,995 (4,487 to 5,537)</td>
<td>-0.02 (-0.15 to -0.11)</td>
<td>0.06 (-0.06 to 0.17)</td>
<td>89 (82 to 96)</td>
<td>63 (58 to 67)</td>
<td>54 (49 to 61)</td>
<td>-0.39 (-0.47 to -0.3)</td>
<td>-0.13 (-0.23 to -0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>13,271 (12,306 to 14,297)</td>
<td>12,867 (11,960 to 13,752)</td>
<td>14,518 (13,073 to 16,131)</td>
<td>0.1 (-0.03 to 0.23)</td>
<td>0.13 (0.01 to 0.26)</td>
<td>80 (74 to 86)</td>
<td>53 (49 to 56)</td>
<td>45 (40 to 50)</td>
<td>-0.44 (-0.51 to -0.37)</td>
<td>-0.15 (-0.24 to -0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>1,109 (1,017 to 1,201)</td>
<td>1,201 (1,111 to 1,294)</td>
<td>1,341 (1,205 to 1,491)</td>
<td>0.21 (0.06 to 0.38)</td>
<td>0.12 (0.0 to 0.26)</td>
<td>77 (70 to 83)</td>
<td>52 (48 to 56)</td>
<td>43 (39 to 48)</td>
<td>-0.51 (-0.51 to -0.36)</td>
<td>-0.17 (-0.26 to -0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>724 (668 to 783)</td>
<td>553 (512 to 595)</td>
<td>539 (482 to 600)</td>
<td>-0.25 (-0.34 to -0.15)</td>
<td>-0.02 (-0.14 to -0.1)</td>
<td>116 (107 to 126)</td>
<td>66 (61 to 71)</td>
<td>54 (48 to 60)</td>
<td>-0.54 (-0.59 to -0.47)</td>
<td>-0.18 (-0.28 to -0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>6,076 (5,654 to 6,538)</td>
<td>4,878 (4,548 to 5,226)</td>
<td>4,943 (4,468 to 5,425)</td>
<td>-0.19 (-0.28 to -0.08)</td>
<td>0.01 (-0.1 to 0.13)</td>
<td>95 (88 to 102)</td>
<td>54 (50 to 58)</td>
<td>44 (39 to 48)</td>
<td>-0.54 (-0.59 to -0.48)</td>
<td>-0.19 (-0.28 to -0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>5,213 (4,822 to 5,627)</td>
<td>4,625 (4,334 to 4,941)</td>
<td>4,879 (4,378 to 5,358)</td>
<td>-0.06 (-0.18 to -0.06)</td>
<td>0.06 (-0.06 to 0.18)</td>
<td>97 (90 to 105)</td>
<td>61 (57 to 65)</td>
<td>50 (44 to 55)</td>
<td>-0.49 (-0.55 to -0.43)</td>
<td>-0.18 (-0.27 to -0.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>2,551 (2,350 to 2,763)</td>
<td>1,951 (1,797 to 2,097)</td>
<td>- .27</td>
<td>1,851 (1,668 to 2,060)</td>
<td>- .05</td>
<td>- .16 to .07</td>
<td>106 (98 to 114)</td>
<td>- .38</td>
<td>- .46 to -.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>5,860 (5,431 to 6,295)</td>
<td>4,516 (4,234 to 4,828)</td>
<td>- .23</td>
<td>4,487 (4,072 to 4,932)</td>
<td>- .01</td>
<td>- .11 to .11</td>
<td>98 (91 to 106)</td>
<td>- .46</td>
<td>- .52 to -.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>489 (448 to 534)</td>
<td>482 (441 to 522)</td>
<td>.01</td>
<td>492 (427 to 560)</td>
<td>-.02</td>
<td>-.12 to .18</td>
<td>107 (99 to 117)</td>
<td>- .42</td>
<td>-.5 to -.31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atrial Fibrillation and Flutter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>5,967 (4,550 to 7,672)</td>
<td>8,038 (6,222 to 10,099)</td>
<td>.64</td>
<td>9,757 (7,582 to 12,309)</td>
<td>.21</td>
<td>.16 to .28</td>
<td>121 (92 to 155)</td>
<td>.13</td>
<td>.09 to .21</td>
</tr>
<tr>
<td>Alaska</td>
<td>325 (242 to 424)</td>
<td>753 (571 to 959)</td>
<td>2.3</td>
<td>1,069 (809 to 1,368)</td>
<td>.42</td>
<td>.34 to .51</td>
<td>130 (98 to 169)</td>
<td>.12</td>
<td>.03 to .23</td>
</tr>
<tr>
<td>Arizona</td>
<td>5,313 (4,009 to 6,868)</td>
<td>10,824 (8,418 to 13,651)</td>
<td>1.87</td>
<td>15,193 (11,786 to 19,082)</td>
<td>.4</td>
<td>.34 to .47</td>
<td>122 (92 to 158)</td>
<td>.13</td>
<td>.0 to .25</td>
</tr>
<tr>
<td>Arkansas</td>
<td>3,785 (2,853 to 4,911)</td>
<td>4,767 (3,671 to 6,012)</td>
<td>.53</td>
<td>5,752 (4,440 to 7,216)</td>
<td>.21</td>
<td>.15 to .26</td>
<td>115 (86 to 149)</td>
<td>.12</td>
<td>-.03 to .2</td>
</tr>
<tr>
<td>California</td>
<td>27,867 (20,719 to 35,905)</td>
<td>53,886 (41,736 to 67,851)</td>
<td>1.52</td>
<td>69,897 (54,711 to 88,461)</td>
<td>.3</td>
<td>.24 to .37</td>
<td>93 (69 to 119)</td>
<td>.10</td>
<td>.23 to .57</td>
</tr>
<tr>
<td>Colorado</td>
<td>3,620 (2,706 to 4,704)</td>
<td>6,449 (5,007 to 8,091)</td>
<td>1.57</td>
<td>9,248 (7,137 to 11,587)</td>
<td>.43</td>
<td>.36 to .51</td>
<td>112 (83 to 145)</td>
<td>.4</td>
<td>.15 to .3</td>
</tr>
<tr>
<td>Connecticut</td>
<td>5,629 (4,283 to 7,247)</td>
<td>8,121 (6,301 to 10,201)</td>
<td>.63</td>
<td>9,136 (7,149 to 11,461)</td>
<td>.13</td>
<td>.07 to .19</td>
<td>133 (101 to 171)</td>
<td>.17</td>
<td>.04 to .31</td>
</tr>
<tr>
<td>Delaware</td>
<td>1,003 (752 to 1,300)</td>
<td>1,777 (1,385 to 2,255)</td>
<td>1.36</td>
<td>2,363 (1,843 to 2,982)</td>
<td>.33</td>
<td>.27 to .39</td>
<td>133 (100 to 172)</td>
<td>.14</td>
<td>.01 to .27</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>781 (590 to 1,026)</td>
<td>779 (594 to 983)</td>
<td>.12</td>
<td>870 (659 to 1,096)</td>
<td>.12</td>
<td>.06 to .18</td>
<td>107 (80 to 140)</td>
<td>.10</td>
<td>-.06 to .13</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Estimated Deaths (95% CI)</th>
<th>Deaths per 100,000 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>28,301 (21,458 to 36,459)</td>
<td>1.11 (.89 to 1.35)</td>
</tr>
<tr>
<td></td>
<td>46,224 (35,712 to 57,999)</td>
<td>.29 (.23 to .35)</td>
</tr>
<tr>
<td></td>
<td>59,546 (46,377 to 74,289)</td>
<td>133 (101 to 171)</td>
</tr>
<tr>
<td></td>
<td>152 (118 to 191)</td>
<td>.14 (.03 to .26)</td>
</tr>
<tr>
<td>Georgia</td>
<td>7,607 (5,731 to 9,849)</td>
<td>1.25 (1.03 to 1.49)</td>
</tr>
<tr>
<td></td>
<td>12,616 (9,701 to 15,900)</td>
<td>.36 (.3 to .42)</td>
</tr>
<tr>
<td></td>
<td>17,097 (13,286 to 21,375)</td>
<td>120 (91 to 155)</td>
</tr>
<tr>
<td></td>
<td>133 (102 to 167)</td>
<td>.1 (.01 to .21)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,359 (1,021 to 1,778)</td>
<td>1.19 (.94 to 1.43)</td>
</tr>
<tr>
<td></td>
<td>2,280 (1,755 to 2,886)</td>
<td>.3 (.23 to .37)</td>
</tr>
<tr>
<td></td>
<td>2,960 (2,290 to 3,727)</td>
<td>117 (89 to 153)</td>
</tr>
<tr>
<td></td>
<td>122 (93 to 154)</td>
<td>.05 (-.06 to .16)</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,400 (1,048 to 1,815)</td>
<td>1.51 (1.24 to 1.79)</td>
</tr>
<tr>
<td></td>
<td>2,472 (1,909 to 3,113)</td>
<td>.42 (.34 to .5)</td>
</tr>
<tr>
<td></td>
<td>3,504 (2,705 to 4,430)</td>
<td>122 (91 to 158)</td>
</tr>
<tr>
<td></td>
<td>139 (107 to 176)</td>
<td>.19 (.06 to .33)</td>
</tr>
<tr>
<td>Illinois</td>
<td>16,365 (12,276 to 21,279)</td>
<td>1.25 (1.03 to 1.49)</td>
</tr>
<tr>
<td></td>
<td>20,799 (16,096 to 26,010)</td>
<td>.19 (.14 to .24)</td>
</tr>
<tr>
<td></td>
<td>24,747 (19,286 to 31,268)</td>
<td>119 (89 to 155)</td>
</tr>
<tr>
<td></td>
<td>128 (98 to 160)</td>
<td>.36 (.3 to .42)</td>
</tr>
<tr>
<td>Indiana</td>
<td>8,284 (6,267 to 10,730)</td>
<td>1.32 (.16 to .48)</td>
</tr>
<tr>
<td></td>
<td>11,366 (8,818 to 14,259)</td>
<td>.09 (.03 to .15)</td>
</tr>
<tr>
<td></td>
<td>13,807 (10,805 to 17,312)</td>
<td>119 (89 to 152)</td>
</tr>
<tr>
<td></td>
<td>128 (97 to 162)</td>
<td>.14 (.01 to .26)</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,907 (3,715 to 6,332)</td>
<td>1.52 (.48 to .86)</td>
</tr>
<tr>
<td></td>
<td>5,920 (4,594 to 7,429)</td>
<td>.22 (.16 to .27)</td>
</tr>
<tr>
<td></td>
<td>6,451 (5,023 to 8,101)</td>
<td>124 (94 to 161)</td>
</tr>
<tr>
<td></td>
<td>128 (97 to 162)</td>
<td>.06 (-.06 to .18)</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,915 (2,956 to 5,045)</td>
<td>1.49 (.32 to .68)</td>
</tr>
<tr>
<td></td>
<td>4,910 (3,832 to 6,186)</td>
<td>.19 (.12 to .25)</td>
</tr>
<tr>
<td></td>
<td>5,826 (4,509 to 7,308)</td>
<td>118 (88 to 153)</td>
</tr>
<tr>
<td></td>
<td>127 (99 to 162)</td>
<td>.13 (0 to .27)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>5,862 (4,431 to 7,501)</td>
<td>1.73 (.54 to .94)</td>
</tr>
<tr>
<td></td>
<td>8,358 (6,496 to 10,462)</td>
<td>.21 (.16 to .27)</td>
</tr>
<tr>
<td></td>
<td>10,131 (7,947 to 12,643)</td>
<td>132 (100 to 169)</td>
</tr>
<tr>
<td></td>
<td>152 (118 to 191)</td>
<td>.16 (.04 to .3)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>5,543 (4,190 to 7,222)</td>
<td>1.23 (.17 to .29)</td>
</tr>
<tr>
<td></td>
<td>7,182 (5,544 to 8,994)</td>
<td>.23 (.17 to .29)</td>
</tr>
<tr>
<td></td>
<td>8,825 (6,822 to 11,058)</td>
<td>124 (93 to 161)</td>
</tr>
<tr>
<td></td>
<td>135 (104 to 170)</td>
<td>.1 (-.02 to .22)</td>
</tr>
<tr>
<td>Maine</td>
<td>2,126 (1,620 to 2,723)</td>
<td>1.73 (.66 to 1.06)</td>
</tr>
<tr>
<td></td>
<td>3,241 (2,512 to 4,078)</td>
<td>.16 (.16 to .26)</td>
</tr>
<tr>
<td></td>
<td>3,921 (3,040 to 4,922)</td>
<td>135 (102 to 173)</td>
</tr>
<tr>
<td></td>
<td>159 (125 to 202)</td>
<td>.17 (.05 to .31)</td>
</tr>
<tr>
<td>Maryland</td>
<td>6,228 (4,691 to 8,027)</td>
<td>1.97 (.76 to 1.19)</td>
</tr>
<tr>
<td></td>
<td>9,704 (7,527 to 12,177)</td>
<td>.26 (.21 to .32)</td>
</tr>
<tr>
<td></td>
<td>12,245 (9,469 to 15,305)</td>
<td>126 (95 to 162)</td>
</tr>
<tr>
<td></td>
<td>140 (108 to 175)</td>
<td>.13 (0 to .25)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>10,670 (8,094 to 13,615)</td>
<td>1.23 (.46 to .79)</td>
</tr>
<tr>
<td></td>
<td>15,439 (11,927 to 19,375)</td>
<td>.12 (.07 to .17)</td>
</tr>
<tr>
<td></td>
<td>17,263 (13,596 to 21,744)</td>
<td>137 (104 to 176)</td>
</tr>
<tr>
<td></td>
<td>168 (130 to 213)</td>
<td>.17 (.06 to .29)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Estimated Incidence Rate (95% CI)</th>
<th>2-Year Prevalence (95% CI)</th>
<th>5-Year Prevalence (95% CI)</th>
<th>10-Year Prevalence (95% CI)</th>
<th>1-Year Mortality (95% CI)</th>
<th>5-Year Mortality (95% CI)</th>
<th>10-Year Mortality (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>13,067 (9,912 to 16,655)</td>
<td>17,720 (13,681 to 22,109)</td>
<td>21,926 (17,036 to 27,512)</td>
<td>.68 (.54 to .83)</td>
<td>.24 (.17 to .31)</td>
<td>124 (94 to 158)</td>
<td>132 (101 to 165)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>6,264 (4,750 to 8,128)</td>
<td>8,642 (6,667 to 10,921)</td>
<td>10,679 (8,252 to 13,443)</td>
<td>.71 (.5 to .92)</td>
<td>.24 (.17 to .3)</td>
<td>116 (87 to 151)</td>
<td>127 (98 to 161)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>3,577 (2,691 to 4,632)</td>
<td>4,675 (3,640 to 5,902)</td>
<td>5,428 (4,227 to 6,795)</td>
<td>.52 (.36 to .69)</td>
<td>.16 (.1 to .22)</td>
<td>117 (87 to 151)</td>
<td>129 (100 to 163)</td>
</tr>
<tr>
<td>Missouri</td>
<td>8,482 (6,420 to 10,811)</td>
<td>11,557 (8,980 to 14,535)</td>
<td>14,012 (10,916 to 17,730)</td>
<td>.66 (.46 to .86)</td>
<td>.21 (.16 to .27)</td>
<td>123 (93 to 158)</td>
<td>142 (110 to 179)</td>
</tr>
<tr>
<td>Montana</td>
<td>1,254 (943 to 1,617)</td>
<td>2,096 (1,622 to 2,623)</td>
<td>2,607 (2,025 to 3,275)</td>
<td>1.09 (.82 to 1.36)</td>
<td>.24 (.18 to .31)</td>
<td>124 (93 to 160)</td>
<td>150 (116 to 190)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>2,687 (2,041 to 3,441)</td>
<td>3,390 (2,628 to 4,220)</td>
<td>3,923 (2,996 to 4,914)</td>
<td>.46 (.32 to .61)</td>
<td>.16 (.1 to .22)</td>
<td>123 (93 to 158)</td>
<td>135 (103 to 169)</td>
</tr>
<tr>
<td>Nevada</td>
<td>1,397 (1,044 to 1,828)</td>
<td>3,623 (2,799 to 4,587)</td>
<td>5,176 (4,027 to 6,523)</td>
<td>2.72 (2.26 to 3.19)</td>
<td>.43 (.37 to .5)</td>
<td>119 (90 to 154)</td>
<td>129 (100 to 163)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,631 (1,231 to 2,095)</td>
<td>2,799 (2,173 to 3,507)</td>
<td>3,540 (2,763 to 4,480)</td>
<td>1.18 (.94 to 1.43)</td>
<td>.27 (.22 to .33)</td>
<td>133 (100 to 172)</td>
<td>161 (125 to 203)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>12,518 (9,544 to 16,032)</td>
<td>17,694 (13,834 to 22,170)</td>
<td>20,760 (16,168 to 25,820)</td>
<td>.66 (.48 to .85)</td>
<td>.17 (.12 to .23)</td>
<td>129 (99 to 166)</td>
<td>147 (114 to 185)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,664 (1,245 to 2,172)</td>
<td>2,623 (2,036 to 3,288)</td>
<td>3,350 (2,618 to 4,193)</td>
<td>1.02 (.76 to 1.29)</td>
<td>.28 (.21 to .35)</td>
<td>108 (81 to 140)</td>
<td>105 (82 to 132)</td>
</tr>
<tr>
<td>New York</td>
<td>29,543 (22,289 to 37,949)</td>
<td>39,194 (30,478 to 49,441)</td>
<td>45,115 (35,316 to 56,581)</td>
<td>.53 (.36 to .71)</td>
<td>.15 (.1 to .21)</td>
<td>131 (99 to 169)</td>
<td>149 (115 to 189)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>9,236 (6,995 to 11,859)</td>
<td>15,430 (11,974 to 19,383)</td>
<td>20,190 (15,676 to 25,417)</td>
<td>1.19 (.94 to 1.46)</td>
<td>.31 (.26 to .36)</td>
<td>122 (92 to 157)</td>
<td>137 (106 to 172)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,020 (764 to 1,329)</td>
<td>1,265 (979 to 1,582)</td>
<td>1,434 (1,105 to 1,824)</td>
<td>.41 (.28 to .54)</td>
<td>.13 (.07 to .2)</td>
<td>115 (85 to 150)</td>
<td>125 (96 to 159)</td>
</tr>
<tr>
<td>State</td>
<td>Early (5-14)</td>
<td>Late (15-39)</td>
<td>Old (40-64)</td>
<td>Very Old (≥65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>17,111 (12,952 to 22,154)</td>
<td>24,036 (18,628 to 29,952)</td>
<td>28,063 (21,803 to 35,023)</td>
<td>≥70 (91 to 166)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4,893 (3,701 to 6,207)</td>
<td>6,419 (4,984 to 8,092)</td>
<td>7,983 (6,238 to 10,001)</td>
<td>6.50 (.46 to .84)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>4,453 (3,350 to 5,816)</td>
<td>7,251 (5,643 to 9,074)</td>
<td>9,212 (7,208 to 11,544)</td>
<td>10.08 (.85 to 1.31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>22,207 (16,778 to 28,670)</td>
<td>29,416 (22,822 to 36,829)</td>
<td>32,953 (25,784 to 41,231)</td>
<td>4.49 (.33 to .66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,735 (1,312 to 2,233)</td>
<td>2,344 (1,816 to 2,942)</td>
<td>2,599 (2,009 to 3,266)</td>
<td>.5 (.34 to .66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>4,475 (3,366 to 5,760)</td>
<td>7,660 (5,905 to 9,658)</td>
<td>10,554 (8,226 to 13,186)</td>
<td>1.37 (1.09 to 1.66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>1,188 (898 to 1,524)</td>
<td>1,566 (1,209 to 1,984)</td>
<td>1,933 (1,487 to 2,453)</td>
<td>.63 (.48 to .81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>7,213 (5,466 to 9,317)</td>
<td>10,318 (7,976 to 13,049)</td>
<td>13,478 (10,347 to 16,897)</td>
<td>.87 (.69 to 1.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>20,236 (15,254 to 26,172)</td>
<td>34,109 (26,381 to 42,904)</td>
<td>46,258 (36,216 to 58,253)</td>
<td>.63 (.48 to .81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>1,705 (1,294 to 2,209)</td>
<td>3,039 (2,342 to 3,822)</td>
<td>4,159 (3,203 to 5,213)</td>
<td>1.45 (1.17 to 1.73)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>822 (620 to 1,060)</td>
<td>1,294 (996 to 1,629)</td>
<td>1,620 (1,241 to 2,045)</td>
<td>.98 (.70 to 1.17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>7,736 (5,839 to 9,955)</td>
<td>12,852 (9,957 to 16,115)</td>
<td>16,281 (12,644 to 20,348)</td>
<td>1.11 (.87 to 1.37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>6,724 (5,048 to 8,655)</td>
<td>11,179 (8,679 to 14,103)</td>
<td>14,763 (11,411 to 18,563)</td>
<td>1.2 (0.95 to 1.48)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1,569 (1,225 to 2,092)</td>
<td>2,287 (1,552 to 2,703)</td>
<td>2,705 (1,853 to 3,330)</td>
<td>.74 (.33 to 1.13)</td>
<td>.19 (0.03 to 0.35)</td>
</tr>
<tr>
<td>Alaska</td>
<td>166 (101 to 203)</td>
<td>303 (176 to 378)</td>
<td>387 (219 to 504)</td>
<td>1.33 (.96 to 1.72)</td>
<td>.28 (.10 to 0.48)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,381 (1,065 to 1,812)</td>
<td>2,631 (1,943 to 3,311)</td>
<td>3,265 (2,530 to 4,405)</td>
<td>1.37 (1.11 to 1.68)</td>
<td>.24 (0.07 to 0.44)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>944 (751 to 1,249)</td>
<td>1,406 (958 to 1,692)</td>
<td>1,649 (1,123 to 1,999)</td>
<td>.76 (0.39 to 1.12)</td>
<td>.17 (0.05 to 0.31)</td>
</tr>
<tr>
<td>California</td>
<td>9,283 (7,705 to 13,968)</td>
<td>12,147 (9,813 to 18,482)</td>
<td>14,727 (11,102 to 23,411)</td>
<td>.58 (0.31 to 0.88)</td>
<td>.21 (0.05 to 0.38)</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,138 (854 to 1,470)</td>
<td>1,928 (1,421 to 2,374)</td>
<td>2,601 (1,898 to 3,268)</td>
<td>1.29 (1.01 to 1.62)</td>
<td>.35 (0.21 to 0.5)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,299 (1,063 to 1,828)</td>
<td>1,548 (1,226 to 2,117)</td>
<td>1,688 (1,349 to 2,361)</td>
<td>.3 (0.13 to 0.48)</td>
<td>.09 (-0.05 to 0.24)</td>
</tr>
<tr>
<td>Delaware</td>
<td>288 (208 to 352)</td>
<td>448 (301 to 530)</td>
<td>568 (393 to 678)</td>
<td>.97 (0.74 to 1.23)</td>
<td>.27 (0.13 to 0.41)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>416 (232 to 521)</td>
<td>364 (219 to 439)</td>
<td>393 (262 to 489)</td>
<td>-.03 (-0.24 to 0.28)</td>
<td>.09 (-0.1 to 0.32)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>7,676 (5,787 to 9,872)</td>
<td>10,566 (8,241 to 13,292)</td>
<td>12,571 (9,713 to 15,737)</td>
<td>.64 (.45 to .83)</td>
<td>.19 (.14 to .24)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>511 (385 to 668)</td>
<td>769 (591 to 978)</td>
<td>984 (754 to 1,241)</td>
<td>.93 (.74 to 1.14)</td>
<td>.28 (.21 to .35)</td>
</tr>
</tbody>
</table>

Endocarditis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1,569 (1,225 to 2,092)</td>
<td>2,287 (1,552 to 2,703)</td>
<td>2,705 (1,853 to 3,330)</td>
<td>.74 (.33 to 1.13)</td>
<td>.19 (0.03 to 0.35)</td>
</tr>
<tr>
<td>Alaska</td>
<td>166 (101 to 203)</td>
<td>303 (176 to 378)</td>
<td>387 (219 to 504)</td>
<td>1.33 (.96 to 1.72)</td>
<td>.28 (.10 to 0.48)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,381 (1,065 to 1,812)</td>
<td>2,631 (1,943 to 3,311)</td>
<td>3,265 (2,530 to 4,405)</td>
<td>1.37 (1.11 to 1.68)</td>
<td>.24 (0.07 to 0.44)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>944 (751 to 1,249)</td>
<td>1,406 (958 to 1,692)</td>
<td>1,649 (1,123 to 1,999)</td>
<td>.76 (0.39 to 1.12)</td>
<td>.17 (0.05 to 0.31)</td>
</tr>
<tr>
<td>California</td>
<td>9,283 (7,705 to 13,968)</td>
<td>12,147 (9,813 to 18,482)</td>
<td>14,727 (11,102 to 23,411)</td>
<td>.58 (0.31 to 0.88)</td>
<td>.21 (0.05 to 0.38)</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,138 (854 to 1,470)</td>
<td>1,928 (1,421 to 2,374)</td>
<td>2,601 (1,898 to 3,268)</td>
<td>1.29 (1.01 to 1.62)</td>
<td>.35 (0.21 to 0.5)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,299 (1,063 to 1,828)</td>
<td>1,548 (1,226 to 2,117)</td>
<td>1,688 (1,349 to 2,361)</td>
<td>.3 (0.13 to 0.48)</td>
<td>.09 (-0.05 to 0.24)</td>
</tr>
<tr>
<td>Delaware</td>
<td>288 (208 to 352)</td>
<td>448 (301 to 530)</td>
<td>568 (393 to 678)</td>
<td>.97 (0.74 to 1.23)</td>
<td>.27 (0.13 to 0.41)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>416 (232 to 521)</td>
<td>364 (219 to 439)</td>
<td>393 (262 to 489)</td>
<td>-.03 (-0.24 to 0.28)</td>
<td>.09 (-0.1 to 0.32)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>5,953</td>
<td>(4,742 to 8,176)</td>
<td>9,200</td>
<td>(6,944 to 11,827)</td>
<td>11,498</td>
<td>(8,801 to 15,265)</td>
<td>.94</td>
<td>(.7 to 1.22)</td>
<td>.25</td>
<td>(.1 to .41)</td>
<td>.35</td>
<td>(28 to 47)</td>
<td>.37</td>
<td>(28 to 48)</td>
</tr>
<tr>
<td>Georgia</td>
<td>2,329</td>
<td>(1,770 to 3,043)</td>
<td>3,899</td>
<td>(2,801 to 4,774)</td>
<td>5,003</td>
<td>(3,635 to 6,224)</td>
<td>1.15</td>
<td>(.85 to 1.47)</td>
<td>.29</td>
<td>(.12 to .48)</td>
<td>.36</td>
<td>(27 to 47)</td>
<td>40</td>
<td>(29 to 49)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>385</td>
<td>(318 to 556)</td>
<td>582</td>
<td>(453 to 777)</td>
<td>711</td>
<td>(566 to 959)</td>
<td>.86</td>
<td>(.59 to 1.12)</td>
<td>.22</td>
<td>(.1 to .34)</td>
<td>.33</td>
<td>(27 to 47)</td>
<td>35</td>
<td>(27 to 48)</td>
</tr>
<tr>
<td>Idaho</td>
<td>363</td>
<td>(271 to 449)</td>
<td>630</td>
<td>(426 to 742)</td>
<td>823</td>
<td>(563 to 1,003)</td>
<td>1.27</td>
<td>(.9 to 1.68)</td>
<td>.31</td>
<td>(.14 to .49)</td>
<td>.34</td>
<td>(25 to 42)</td>
<td>37</td>
<td>(25 to 44)</td>
</tr>
<tr>
<td>Illinois</td>
<td>4,464</td>
<td>(3,493 to 5,993)</td>
<td>5,431</td>
<td>(4,225 to 7,250)</td>
<td>6,064</td>
<td>(4,955 to 8,495)</td>
<td>.36</td>
<td>(.2 to .54)</td>
<td>.12</td>
<td>(-.01 to .25)</td>
<td>.35</td>
<td>(27 to 47)</td>
<td>37</td>
<td>(29 to 49)</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,076</td>
<td>(1,602 to 2,772)</td>
<td>2,957</td>
<td>(2,087 to 3,562)</td>
<td>3,460</td>
<td>(2,335 to 4,207)</td>
<td>.67</td>
<td>(.34 to 1.04)</td>
<td>.17</td>
<td>(.03 to .31)</td>
<td>.33</td>
<td>(26 to 45)</td>
<td>39</td>
<td>(28 to 47)</td>
</tr>
<tr>
<td>Iowa</td>
<td>959</td>
<td>(752 to 1,152)</td>
<td>1,119</td>
<td>(898 to 1,733)</td>
<td>1,293</td>
<td>(1,032 to 1,976)</td>
<td>.36</td>
<td>(.18 to .56)</td>
<td>.16</td>
<td>(.04 to .3)</td>
<td>.27</td>
<td>(21 to 44)</td>
<td>29</td>
<td>(23 to 44)</td>
</tr>
<tr>
<td>Kansas</td>
<td>890</td>
<td>(729 to 1,278)</td>
<td>1,209</td>
<td>(897 to 1,503)</td>
<td>1,394</td>
<td>(1,021 to 1,978)</td>
<td>.58</td>
<td>(.23 to .96)</td>
<td>.15</td>
<td>(0 to .32)</td>
<td>.31</td>
<td>(25 to 44)</td>
<td>36</td>
<td>(26 to 45)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,341</td>
<td>(1,073 to 2,040)</td>
<td>1,964</td>
<td>(1,384 to 2,396)</td>
<td>2,357</td>
<td>(1,633 to 2,839)</td>
<td>.77</td>
<td>(.42 to 1.17)</td>
<td>.2</td>
<td>(.08 to .34)</td>
<td>.32</td>
<td>(26 to 44)</td>
<td>38</td>
<td>(27 to 47)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,611</td>
<td>(1,197 to 1,940)</td>
<td>2,150</td>
<td>(1,430 to 2,516)</td>
<td>2,587</td>
<td>(1,733 to 3,139)</td>
<td>.61</td>
<td>(.33 to .88)</td>
<td>.21</td>
<td>(.09 to .34)</td>
<td>.37</td>
<td>(28 to 47)</td>
<td>43</td>
<td>(29 to 50)</td>
</tr>
<tr>
<td>Maine</td>
<td>471</td>
<td>(365 to 634)</td>
<td>640</td>
<td>(471 to 810)</td>
<td>743</td>
<td>(554 to 949)</td>
<td>.58</td>
<td>(.36 to .81)</td>
<td>.16</td>
<td>(.05 to .29)</td>
<td>.33</td>
<td>(26 to 44)</td>
<td>35</td>
<td>(26 to 45)</td>
</tr>
<tr>
<td>Maryland</td>
<td>1,875</td>
<td>(1,456 to 2,518)</td>
<td>2,544</td>
<td>(1,982 to 3,362)</td>
<td>2,999</td>
<td>(2,381 to 4,120)</td>
<td>.6</td>
<td>(.42 to .8)</td>
<td>.18</td>
<td>(.04 to .32)</td>
<td>.37</td>
<td>(29 to 50)</td>
<td>38</td>
<td>(30 to 51)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,213 (1,824 to 3,220)</td>
<td>2,645 (2,204 to 3,777)</td>
<td>3,004 (2,413 to 4,374)</td>
<td>.36</td>
<td>(.21 to .52)</td>
<td>.13</td>
<td>(.01 to .25)</td>
<td>.31</td>
<td>(26 to 45)</td>
<td>32</td>
<td>(27 to 46)</td>
<td>32</td>
<td>(26 to 47)</td>
<td>.3</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Prevalence (Lower to Upper)</th>
<th>Prevalence Reduction (Lower to Upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>3,525 (2,695 to 4,681)</td>
<td>.55 (.36 to .76)</td>
<td>.15 (.05 to .26)</td>
<td>.35 (27 to 46)</td>
<td>.16 (0.02 to .31)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,448 (1,195 to 2,113)</td>
<td>.61 (.41 to .85)</td>
<td>.21 (.08 to .34)</td>
<td>.29 (24 to 43)</td>
<td>.07 (-.06 to .23)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>923 (737 to 1,291)</td>
<td>.67 (.35 to 1.01)</td>
<td>.17 (.02 to .33)</td>
<td>.33 (26 to 46)</td>
<td>.25 (0 to .5)</td>
</tr>
<tr>
<td>Missouri</td>
<td>1,917 (1,557 to 2,737)</td>
<td>.62 (.33 to .93)</td>
<td>.16 (.05 to .28)</td>
<td>.32 (26 to 45)</td>
<td>.21 (-.01 to .43)</td>
</tr>
<tr>
<td>Montana</td>
<td>368 (240 to 437)</td>
<td>.81 (.52 to 1.15)</td>
<td>.21 (.05 to .39)</td>
<td>.40 (26 to 47)</td>
<td>.13 (-.07 to .35)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>657 (496 to 826)</td>
<td>.54 (.29 to .81)</td>
<td>.16 (.04 to .28)</td>
<td>.35 (27 to 44)</td>
<td>.16 (-.02 to .36)</td>
</tr>
<tr>
<td>Nevada</td>
<td>480 (362 to 601)</td>
<td>1.5 (1.15 to 1.94)</td>
<td>.31 (.13 to .49)</td>
<td>.38 (29 to 48)</td>
<td>.07 (-.06 to .19)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>404 (316 to 537)</td>
<td>.75 (.52 to .98)</td>
<td>.23 (.11 to .36)</td>
<td>.34 (26 to 45)</td>
<td>.07 (-.06 to .21)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,458 (2,552 to 4,271)</td>
<td>.4 (.23 to .58)</td>
<td>.13 (-.01 to .26)</td>
<td>.38 (28 to 47)</td>
<td>.05 (-.08 to .18)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>532 (400 to 678)</td>
<td>1.0 (1.03 to 1.33)</td>
<td>.24 (.08 to .41)</td>
<td>.35 (26 to 44)</td>
<td>.15 (-.08 to .38)</td>
</tr>
<tr>
<td>New York</td>
<td>7,571 (5,813 to 9,823)</td>
<td>.28 (.1 to .5)</td>
<td>.13 (-.01 to .29)</td>
<td>.37 (28 to 48)</td>
<td>.01 (-.15 to .2)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2,502 (1,944 to 3,340)</td>
<td>1.02 (.76 to 1.29)</td>
<td>.29 (.15 to .42)</td>
<td>.34 (27 to 46)</td>
<td>.12 (-.02 to .27)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>250 (197 to 334)</td>
<td>.49 (.23 to .77)</td>
<td>.21 (.07 to .35)</td>
<td>.33 (26 to 44)</td>
<td>.17 (-.04 to .4)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Population (2015)</th>
<th>Deaths (2015)</th>
<th>Confidence Interval</th>
<th>Hazard Ratio</th>
<th>95% CI for Hazard Ratio</th>
<th>Mortality Rate</th>
<th>95% CI for Mortality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>4,247 (3,287 to 5,622)</td>
<td>5,747 (4,079 to 6,867)</td>
<td>6,602 (4,574 to 7,891)</td>
<td>.56 (.27 to .83)</td>
<td>.15 (0.04 to .27)</td>
<td>.34 (27 to 45)</td>
<td>.05 (0.0 to .04)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,166 (949 to 1,636)</td>
<td>1,727 (1,193 to 2,070)</td>
<td>2,087 (1,452 to 2,533)</td>
<td>.81 (.4 to 1.22)</td>
<td>.21 (0.1 to .34)</td>
<td>.32 (26 to 45)</td>
<td>.43 (30 to 51)</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,216 (860 to 1,472)</td>
<td>1,767 (1,230 to 2,074)</td>
<td>2,181 (1,535 to 2,613)</td>
<td>.79 (.59 to 1.02)</td>
<td>.24 (.11 to .36)</td>
<td>.36 (26 to 44)</td>
<td>.38 (26 to 44)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5,816 (4,004 to 6,904)</td>
<td>7,154 (4,614 to 8,432)</td>
<td>7,981 (5,284 to 9,576)</td>
<td>.37 (.21 to .54)</td>
<td>.12 (.01 to .23)</td>
<td>.39 (27 to 46)</td>
<td>.43 (29 to 52)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>387 (319 to 555)</td>
<td>460 (372 to 629)</td>
<td>502 (403 to 703)</td>
<td>.31 (.11 to .54)</td>
<td>.09 (-.05 to .24)</td>
<td>.32 (26 to 45)</td>
<td>.34 (27 to 47)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,296 (984 to 1,678)</td>
<td>2,068 (1,427 to 2,489)</td>
<td>2,666 (1,828 to 3,265)</td>
<td>1.06 (.73 to 1.41)</td>
<td>.29 (.14 to .47)</td>
<td>.35 (27 to 46)</td>
<td>.41 (28 to 50)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>281 (214 to 358)</td>
<td>371 (264 to 445)</td>
<td>451 (323 to 550)</td>
<td>.61 (.34 to .9)</td>
<td>.22 (.08 to .37)</td>
<td>.34 (26 to 43)</td>
<td>.37 (26 to 44)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1,840 (1,447 to 2,520)</td>
<td>2,867 (2,045 to 3,508)</td>
<td>3,560 (2,548 to 4,333)</td>
<td>.95 (.58 to 1.31)</td>
<td>.24 (.12 to .37)</td>
<td>.33 (26 to 46)</td>
<td>.39 (28 to 48)</td>
</tr>
<tr>
<td>Texas</td>
<td>5,373 (4,384 to 7,570)</td>
<td>8,586 (6,739 to 11,246)</td>
<td>11,337 (8,906 to 15,481)</td>
<td>1.12 (.85 to 1.42)</td>
<td>.32 (.19 to .46)</td>
<td>.32 (26 to 45)</td>
<td>.35 (27 to 46)</td>
</tr>
<tr>
<td>Utah</td>
<td>590 (395 to 692)</td>
<td>1,045 (637 to 1,263)</td>
<td>1,379 (848 to 1,705)</td>
<td>1.33 (1 to 1.67)</td>
<td>.32 (.19 to .47)</td>
<td>.40 (27 to 47)</td>
<td>.44 (27 to 53)</td>
</tr>
<tr>
<td>Vermont</td>
<td>207 (161 to 273)</td>
<td>275 (209 to 360)</td>
<td>321 (244 to 424)</td>
<td>.56 (.39 to .76)</td>
<td>.17 (.05 to .3)</td>
<td>.34 (26 to 44)</td>
<td>.34 (26 to 45)</td>
</tr>
<tr>
<td>Virginia</td>
<td>2,233 (1,733 to 2,986)</td>
<td>3,288 (2,472 to 4,189)</td>
<td>3,962 (3,066 to 5,127)</td>
<td>.78 (.6 to .99)</td>
<td>.21 (.08 to .33)</td>
<td>.35 (27 to 46)</td>
<td>.37 (28 to 47)</td>
</tr>
<tr>
<td>Washington</td>
<td>1,951 (1,421 to 2,376)</td>
<td>2,880 (2,059 to 3,436)</td>
<td>3,613 (2,573 to 4,454)</td>
<td>.85 (.63 to 1.08)</td>
<td>.26 (.13 to .38)</td>
<td>.37 (27 to 45)</td>
<td>.38 (27 to 45)</td>
</tr>
<tr>
<td>State</td>
<td>Hypertensive heart disease</td>
<td>Hypertensive heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>8,493 (5,951 to 10,286)</td>
<td>11,127 (8,069 to 14,657)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>438 (359 to 656)</td>
<td>1,078 (808 to 1,454)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>4,498 (3,612 to 7,057)</td>
<td>14,316 (9,098 to 17,128)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>3,884 (3,176 to 5,815)</td>
<td>8,110 (5,336 to 9,649)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>49,366 (32,767 to 57,421)</td>
<td>79,378 (45,079 to 99,125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>3,393 (2,729 to 5,351)</td>
<td>7,982 (6,124 to 10,676)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>4,928 (3,954 to 6,879)</td>
<td>5,125 (4,193 to 7,170)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>1,466 (946 to 1,704)</td>
<td>2,353 (1,566 to 2,769)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td>4,192 (1,433 to 5,546)</td>
<td>3,432 (1,142 to 4,617)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2015 Cases (95% UI)</th>
<th>2010 Cases (95% UI)</th>
<th>Change (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>29,840 (19,872 to 35,266)</td>
<td>44,646 (27,989 to 52,823)</td>
<td>-.23 (-.11 to .38)</td>
</tr>
<tr>
<td>Georgia</td>
<td>12,874 (8,438 to 15,090)</td>
<td>24,599 (13,233 to 30,229)</td>
<td>.36 (.14 to .59)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,285 (1,078 to 1,920)</td>
<td>1,761 (1,460 to 2,617)</td>
<td>-.68 (.48 to .88)</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,084 (852 to 1,755)</td>
<td>1,868 (1,530 to 2,751)</td>
<td>.135 (.81 to 1.85)</td>
</tr>
<tr>
<td>Illinois</td>
<td>23,231 (15,774 to 27,127)</td>
<td>29,784 (17,705 to 35,530)</td>
<td>.52 (.06 to .87)</td>
</tr>
<tr>
<td>Indiana</td>
<td>7,609 (6,134 to 11,865)</td>
<td>10,603 (8,814 to 15,281)</td>
<td>-.26 (-.09 to .42)</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,184 (3,425 to 5,943)</td>
<td>4,563 (3,741 to 6,493)</td>
<td>.29 (.15 to .43)</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,006 (2,344 to 4,892)</td>
<td>3,591 (2,798 to 6,008)</td>
<td>.32 (.14 to .53)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>5,750 (4,726 to 8,399)</td>
<td>9,145 (6,893 to 11,728)</td>
<td>.10 (.09 to .20)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>11,694 (6,227 to 14,185)</td>
<td>15,362 (7,611 to 18,913)</td>
<td>.6 (.31 to .84)</td>
</tr>
<tr>
<td>Maine</td>
<td>1,504 (1,186 to 2,447)</td>
<td>1,840 (1,459 to 3,004)</td>
<td>.41 (.26 to .57)</td>
</tr>
<tr>
<td>Maryland</td>
<td>11,488 (6,630 to 13,628)</td>
<td>16,377 (8,566 to 20,248)</td>
<td>.67 (.26 to .99)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>7,727 (6,404 to 12,080)</td>
<td>9,125 (7,554 to 12,761)</td>
<td>.36 (.05 to .59)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Population (95% CI)</th>
<th>Life Expectancy (95% CI)</th>
<th>Mortality (95% CI)</th>
<th>MMR (95% CI)</th>
<th>MMR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>15,735 (12,073 to 20,486)</td>
<td>23,734 (15,318 to 37,473)</td>
<td>29,039 (17,358 to 35,280)</td>
<td>.85 (.3 to 1.28)</td>
<td>.22 (.06 to .39)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>4,086 (2,992 to 7,343)</td>
<td>4,908 (3,647 to 8,090)</td>
<td>5,723 (4,177 to 10,405)</td>
<td>.41 (.25 to .58)</td>
<td>.17 (.06 to .3)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>6,718 (4,159 to 7,917)</td>
<td>11,422 (5,375 to 14,263)</td>
<td>13,507 (6,100 to 17,747)</td>
<td>.98 (.38 to 1.44)</td>
<td>.18 (.02 to .34)</td>
</tr>
<tr>
<td>Missouri</td>
<td>8,978 (6,926 to 11,810)</td>
<td>11,629 (8,757 to 14,760)</td>
<td>13,664 (9,793 to 17,627)</td>
<td>.53 (.29 to .72)</td>
<td>.18 (.06 to .3)</td>
</tr>
<tr>
<td>Montana</td>
<td>946 (733 to 1,568)</td>
<td>1,381 (1,123 to 2,147)</td>
<td>1,644 (1,302 to 2,470)</td>
<td>.77 (.42 to 1.1)</td>
<td>.2 (.05 to .36)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,971 (1,556 to 3,227)</td>
<td>2,365 (1,941 to 3,638)</td>
<td>2,614 (2,096 to 4,159)</td>
<td>.34 (.17 to .5)</td>
<td>.11 (.01 to .2)</td>
</tr>
<tr>
<td>Nevada</td>
<td>3,651 (1,669 to 4,676)</td>
<td>8,253 (3,663 to 10,598)</td>
<td>10,813 (4,736 to 14,384)</td>
<td>1.94 (1.53 to 2.33)</td>
<td>.31 (.17 to .46)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,402 (1,159 to 2,058)</td>
<td>1,926 (1,492 to 2,552)</td>
<td>2,370 (1,773 to 3,133)</td>
<td>.7 (.37 to 1)</td>
<td>.23 (.11 to .38)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>14,727 (10,632 to 18,257)</td>
<td>15,855 (11,545 to 19,244)</td>
<td>17,803 (11,990 to 21,985)</td>
<td>.21 (-.02 to .41)</td>
<td>.12 (-.01 to .27)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2,013 (1,653 to 2,862)</td>
<td>3,473 (2,673 to 4,463)</td>
<td>4,397 (3,173 to 5,369)</td>
<td>1.21 (.65 to 1.67)</td>
<td>.27 (.08 to .46)</td>
</tr>
<tr>
<td>New York</td>
<td>39,888 (26,021 to 46,622)</td>
<td>47,026 (26,274 to 57,468)</td>
<td>53,275 (27,763 to 68,942)</td>
<td>.32 (-.09 to .64)</td>
<td>.13 (-.03 to .28)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>12,238 (8,904 to 15,004)</td>
<td>16,933 (12,771 to 21,451)</td>
<td>22,155 (15,565 to 27,246)</td>
<td>.81 (.59 to 1.05)</td>
<td>.31 (.15 to .48)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>778 (614 to 1,252)</td>
<td>900 (750 to 1,564)</td>
<td>1,067 (866 to 1,580)</td>
<td>.39 (.16 to .63)</td>
<td>.19 (.04 to .34)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>20,682</td>
<td>28,831</td>
<td>33,422</td>
<td>.61</td>
<td>.16</td>
<td>165</td>
<td>192</td>
<td>204</td>
<td>.23</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>(14,644 to 24,618)</td>
<td>(18,441 to 33,468)</td>
<td>(20,229 to 40,281)</td>
<td>(.26 to .92)</td>
<td>(.04 to .29)</td>
<td>(118 to 200)</td>
<td>(122 to 224)</td>
<td>(120 to 249)</td>
<td>(-.08 to .49)</td>
<td>(-.07 to .19)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4,586</td>
<td>7,548</td>
<td>11,561</td>
<td>1.02</td>
<td>.54</td>
<td>124</td>
<td>167</td>
<td>226</td>
<td>.91</td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td>(3,750 to 7,101)</td>
<td>(5,777 to 10,135)</td>
<td>(6,956 to 13,718)</td>
<td>(.41 to 2.41)</td>
<td>(.12 to .88)</td>
<td>(101 to 193)</td>
<td>(127 to 223)</td>
<td>(134 to 269)</td>
<td>(-.01 to 1.5)</td>
<td>(-.02 to .66)</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,629</td>
<td>4,701</td>
<td>5,291</td>
<td>.45</td>
<td>.12</td>
<td>106</td>
<td>95</td>
<td>88</td>
<td>-.18</td>
<td>-.07</td>
</tr>
<tr>
<td></td>
<td>(2,922 to 5,810)</td>
<td>(3,744 to 7,606)</td>
<td>(4,092 to 8,839)</td>
<td>(.28 to .67)</td>
<td>(.02 to .23)</td>
<td>(85 to 173)</td>
<td>(75 to 155)</td>
<td>(67 to 147)</td>
<td>(-.27 to -.06)</td>
<td>(-.16 to .01)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>20,198</td>
<td>22,146</td>
<td>26,530</td>
<td>.33</td>
<td>.21</td>
<td>132</td>
<td>126</td>
<td>138</td>
<td>.06</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>(16,562 to 28,638)</td>
<td>(18,660 to 31,405)</td>
<td>(20,233 to 33,933)</td>
<td>(.08 to .53)</td>
<td>(.01 to .39)</td>
<td>(109 to 191)</td>
<td>(105 to 177)</td>
<td>(102 to 175)</td>
<td>(-.17 to .25)</td>
<td>(-.08 to .28)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,442</td>
<td>1,608</td>
<td>1,868</td>
<td>.31</td>
<td>.17</td>
<td>117</td>
<td>110</td>
<td>119</td>
<td>.04</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td>(1,182 to 2,241)</td>
<td>(1,346 to 2,339)</td>
<td>(1,458 to 2,574)</td>
<td>(.03 to .57)</td>
<td>(.03 to .38)</td>
<td>(96 to 182)</td>
<td>(92 to 160)</td>
<td>(91 to 161)</td>
<td>(-.21 to .26)</td>
<td>(-.1 to .29)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>6,498</td>
<td>9,176</td>
<td>11,765</td>
<td>.81</td>
<td>.28</td>
<td>179</td>
<td>168</td>
<td>172</td>
<td>-.04</td>
<td>-.02</td>
</tr>
<tr>
<td></td>
<td>(4,706 to 8,240)</td>
<td>(6,837 to 12,136)</td>
<td>(8,653 to 15,408)</td>
<td>(.59 to 1.1)</td>
<td>(.14 to .45)</td>
<td>(129 to 229)</td>
<td>(126 to 222)</td>
<td>(124 to 220)</td>
<td>(-.17 to .11)</td>
<td>(-.1 to .16)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>787</td>
<td>992</td>
<td>1,228</td>
<td>.6</td>
<td>.25</td>
<td>92</td>
<td>93</td>
<td>100</td>
<td>-.12</td>
<td>-.09</td>
</tr>
<tr>
<td></td>
<td>(567 to 1,407)</td>
<td>(756 to 1,680)</td>
<td>(947 to 1,987)</td>
<td>(.29 to .9)</td>
<td>(.09 to .42)</td>
<td>(66 to 168)</td>
<td>(70 to 159)</td>
<td>(77 to 161)</td>
<td>(-.13 to .35)</td>
<td>(-.06 to .25)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>10,634</td>
<td>16,960</td>
<td>21,725</td>
<td>1.03</td>
<td>.28</td>
<td>191</td>
<td>222</td>
<td>242</td>
<td>-.26</td>
<td>-.08</td>
</tr>
<tr>
<td></td>
<td>(6,994 to 12,369)</td>
<td>(10,150 to 19,848)</td>
<td>(12,083 to 26,391)</td>
<td>(.54 to 1.35)</td>
<td>(.14 to .42)</td>
<td>(126 to 223)</td>
<td>(132 to 260)</td>
<td>(131 to 296)</td>
<td>(-.08 to .48)</td>
<td>(-.05 to .22)</td>
</tr>
<tr>
<td>Texas</td>
<td>29,013</td>
<td>47,573</td>
<td>62,925</td>
<td>1.16</td>
<td>.32</td>
<td>178</td>
<td>189</td>
<td>192</td>
<td>-.07</td>
<td>-.14</td>
</tr>
<tr>
<td></td>
<td>(19,810 to 34,046)</td>
<td>(29,605 to 52,604)</td>
<td>(36,392 to 76,477)</td>
<td>(.74 to 1.5)</td>
<td>(.17 to .47)</td>
<td>(121 to 209)</td>
<td>(118 to 220)</td>
<td>(111 to 234)</td>
<td>(-.14 to .24)</td>
<td>(-.1 to .13)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,705</td>
<td>2,703</td>
<td>3,588</td>
<td>1.11</td>
<td>.33</td>
<td>121</td>
<td>114</td>
<td>115</td>
<td>-.05</td>
<td>-.15</td>
</tr>
<tr>
<td></td>
<td>(1,359 to 2,364)</td>
<td>(2,196 to 5,760)</td>
<td>(2,867 to 4,950)</td>
<td>(.89 to 1.34)</td>
<td>(.22 to .46)</td>
<td>(96 to 167)</td>
<td>(93 to 160)</td>
<td>(92 to 157)</td>
<td>(-.15 to .06)</td>
<td>(-.08 to .11)</td>
</tr>
<tr>
<td>Vermont</td>
<td>831</td>
<td>1,017</td>
<td>1,225</td>
<td>.48</td>
<td>.21</td>
<td>136</td>
<td>118</td>
<td>124</td>
<td>-.09</td>
<td>-.09</td>
</tr>
<tr>
<td></td>
<td>(643 to 1,118)</td>
<td>(748 to 1,268)</td>
<td>(850 to 1,483)</td>
<td>(.22 to .71)</td>
<td>(.07 to .35)</td>
<td>(105 to 183)</td>
<td>(86 to 147)</td>
<td>(84 to 149)</td>
<td>(-.26 to .07)</td>
<td>(-.08 to .18)</td>
</tr>
<tr>
<td>Virginia</td>
<td>8,629</td>
<td>11,444</td>
<td>13,787</td>
<td>.61</td>
<td>.21</td>
<td>136</td>
<td>123</td>
<td>123</td>
<td>-.09</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(6,854 to 12,275)</td>
<td>(9,459 to 16,302)</td>
<td>(10,993 to 18,846)</td>
<td>(.38 to .81)</td>
<td>(.08 to .34)</td>
<td>(108 to 193)</td>
<td>(102 to 175)</td>
<td>(97 to 165)</td>
<td>(-.23 to .03)</td>
<td>(-.12 to .13)</td>
</tr>
<tr>
<td>Washington</td>
<td>6,144</td>
<td>10,043</td>
<td>11,858</td>
<td>.95</td>
<td>.18</td>
<td>117</td>
<td>126</td>
<td>119</td>
<td>-.03</td>
<td>-.06</td>
</tr>
<tr>
<td></td>
<td>(5,065 to 8,880)</td>
<td>(7,187 to 12,358)</td>
<td>(8,541 to 14,892)</td>
<td>(.5 to 1.33)</td>
<td>(.07 to .31)</td>
<td>(96 to 170)</td>
<td>(90 to 157)</td>
<td>(86 to 150)</td>
<td>(-.22 to .23)</td>
<td>(-.15 to .04)</td>
</tr>
<tr>
<td>State</td>
<td>2016 Estimates (95% CI)</td>
<td>2017 Estimates (95% CI)</td>
<td>2018 Estimates (95% CI)</td>
<td>2019 Estimates (95% CI)</td>
<td>2020 Estimates (95% CI)</td>
<td>2021 Estimates (95% CI)</td>
<td>2022 Estimates (95% CI)</td>
<td>2023 Estimates (95% CI)</td>
<td>2024 Estimates (95% CI)</td>
<td>2025 Estimates (95% CI)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>3,316 (2,655 to 4,640)</td>
<td>3,738 (3,029 to 5,760)</td>
<td>4,257 (3,452 to 6,479)</td>
<td>.28 (.12 to .52)</td>
<td>.14 (.04 to .26)</td>
<td>145 (117 to 208)</td>
<td>144 (118 to 218)</td>
<td>158 (127 to 230)</td>
<td>.08 (-.07 to .24)</td>
<td>.1 (-.03 to .23)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>6,730 (5,543 to 9,909)</td>
<td>8,759 (6,966 to 11,757)</td>
<td>10,481 (8,112 to 13,772)</td>
<td>.57 (.26 to .83)</td>
<td>.2 (.08 to .32)</td>
<td>117 (97 to 175)</td>
<td>119 (94 to 161)</td>
<td>124 (94 to 162)</td>
<td>.08 (-.16 to .27)</td>
<td>.05 (-.07 to .17)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>466 (360 to 788)</td>
<td>738 (597 to 1,147)</td>
<td>881 (699 to 1,337)</td>
<td>.93 (.55 to 1.26)</td>
<td>.2 (.05 to .37)</td>
<td>104 (80 to 174)</td>
<td>112 (91 to 174)</td>
<td>113 (90 to 169)</td>
<td>.12 (-.12 to .32)</td>
<td>.02 (-.11 to .17)</td>
</tr>
<tr>
<td>Intracerebral Hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>22,664 (21,226 to 24,234)</td>
<td>30,315 (28,317 to 32,329)</td>
<td>33,326 (29,597 to 37,421)</td>
<td>.47 (.29 to .67)</td>
<td>.1 (-.03 to .25)</td>
<td>510 (478 to 546)</td>
<td>531 (496 to 567)</td>
<td>513 (456 to 577)</td>
<td>.01 (-.12 to .15)</td>
<td>-.03 (-.15 to .1)</td>
</tr>
<tr>
<td>Alaska</td>
<td>1,279 (1,189 to 1,380)</td>
<td>1,991 (1,848 to 2,148)</td>
<td>2,382 (2,097 to 2,690)</td>
<td>.86 (.62 to 1.14)</td>
<td>.2 (.05 to .36)</td>
<td>335 (311 to 364)</td>
<td>311 (288 to 334)</td>
<td>301 (266 to 340)</td>
<td>-.1 (-.21 to .03)</td>
<td>-.03 (-.14 to .09)</td>
</tr>
<tr>
<td>Arizona</td>
<td>11,835 (10,973 to 12,733)</td>
<td>19,714 (18,413 to 21,122)</td>
<td>23,187 (20,848 to 25,585)</td>
<td>.96 (.75 to 1.19)</td>
<td>.18 (.06 to .31)</td>
<td>297 (276 to 319)</td>
<td>275 (257 to 294)</td>
<td>249 (224 to 275)</td>
<td>-.16 (-.25 to -.06)</td>
<td>-.09 (-.18 to 0)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>12,551 (11,734 to 13,370)</td>
<td>15,950 (14,993 to 16,935)</td>
<td>17,784 (16,149 to 19,637)</td>
<td>.42 (.28 to .57)</td>
<td>.12 (.01 to .22)</td>
<td>461 (431 to 491)</td>
<td>458 (430 to 485)</td>
<td>452 (410 to 498)</td>
<td>-.02 (-.11 to .09)</td>
<td>-.01 (-.11 to .08)</td>
</tr>
<tr>
<td>California</td>
<td>106,395 (98,500 to 114,773)</td>
<td>122,217 (113,875 to 130,687)</td>
<td>131,266 (117,461 to 145,864)</td>
<td>.24 (.09 to .39)</td>
<td>.07 (.03 to .2)</td>
<td>361 (335 to 388)</td>
<td>304 (283 to 325)</td>
<td>265 (237 to 295)</td>
<td>-.27 (-.35 to -.17)</td>
<td>-.13 (-.22 to -.03)</td>
</tr>
<tr>
<td>Colorado</td>
<td>9,064 (8,447 to 9,708)</td>
<td>13,431 (12,443 to 130,687)</td>
<td>16,224 (14,731 to 17,864)</td>
<td>.79 (.61 to 1.01)</td>
<td>.21 (.1 to .34)</td>
<td>279 (260 to 299)</td>
<td>255 (237 to 274)</td>
<td>235 (213 to 257)</td>
<td>-.16 (-.24 to -.06)</td>
<td>-.08 (-.16 to .02)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>11,166 (10,324 to 11,972)</td>
<td>10,824 (9,954 to 11,695)</td>
<td>11,363 (10,010 to 12,774)</td>
<td>.02 (-.1 to .16)</td>
<td>.05 (-.07 to .18)</td>
<td>292 (271 to 313)</td>
<td>235 (216 to 255)</td>
<td>221 (194 to 248)</td>
<td>-.24 (-.33 to -.14)</td>
<td>-.06 (-.17 to .05)</td>
</tr>
<tr>
<td>Delaware</td>
<td>2,495 (2,312 to 2,685)</td>
<td>3,291 (3,067 to 3,538)</td>
<td>3,880 (3,533 to 4,210)</td>
<td>.56 (.41 to .73)</td>
<td>.18 (.07 to .3)</td>
<td>345 (320 to 371)</td>
<td>302 (282 to 324)</td>
<td>284 (259 to 308)</td>
<td>-.18 (-.25 to -.09)</td>
<td>-.06 (-.15 to .03)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>4,715 (4,139 to 5,674)</td>
<td>2,813 (2,493 to 3,292)</td>
<td>2,381 (2,042 to 2,837)</td>
<td>-.49 (-.56 to -.42)</td>
<td>-.15 (-.25 to -.04)</td>
<td>716 (631 to 863)</td>
<td>430 (381 to 503)</td>
<td>314 (269 to 375)</td>
<td>-.56 (-.62 to -.5)</td>
<td>-.27 (-.35 to -.17)</td>
</tr>
<tr>
<td>State</td>
<td>Population</td>
<td>Adjusted Population</td>
<td>Adjusted Population 95% CI</td>
<td>Prevalence</td>
<td>Prevalence 95% CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>55,379</td>
<td>73,508</td>
<td>(68,510 to 79,060)</td>
<td>.53</td>
<td>(.36 to .7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>32,925</td>
<td>45,489</td>
<td>(42,356 to 49,163)</td>
<td>.65</td>
<td>(.45 to .88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>4,557</td>
<td>5,640</td>
<td>(5,278 to 6,035)</td>
<td>.35</td>
<td>(.22 to .5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>2,960</td>
<td>4,575</td>
<td>(4,239 to 4,905)</td>
<td>.98</td>
<td>(.73 to 1.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>48,513</td>
<td>47,135</td>
<td>(43,951 to 50,188)</td>
<td>.36</td>
<td>(.19 to .53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>22,082</td>
<td>29,464</td>
<td>(24,203 to 32,710)</td>
<td>.25</td>
<td>(.11 to .39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>9,389</td>
<td>11,720</td>
<td>(9,919 to 11,996)</td>
<td>.58</td>
<td>(.32 to .71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>8,508</td>
<td>11,764</td>
<td>(9,899 to 12,996)</td>
<td>.38</td>
<td>(.22 to .57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>15,158</td>
<td>22,048</td>
<td>(17,641 to 20,143)</td>
<td>.46</td>
<td>(.32 to .61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>21,097</td>
<td>26,722</td>
<td>(22,250 to 23,542)</td>
<td>.27</td>
<td>(.15 to .4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>4,015</td>
<td>5,473</td>
<td>(4,441 to 5,205)</td>
<td>.36</td>
<td>(.22 to .51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>19,073</td>
<td>22,586</td>
<td>(19,488 to 23,014)</td>
<td>.19</td>
<td>(.07 to .31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>20,282</td>
<td>21,801</td>
<td>(18,233 to 23,361)</td>
<td>.08</td>
<td>(-.04 to .19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2001 (Lower CI)</th>
<th>2011 (Lower CI)</th>
<th>2011 (Upper CI)</th>
<th>2011 (Upper CI)</th>
<th>2011 (Upper CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>35,575</td>
<td>37,519</td>
<td>40,482</td>
<td>.14 (.03 to .26)</td>
<td>.08 (-.01 to -.18)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>13,800</td>
<td>16,298</td>
<td>18,801</td>
<td>.36 (.22 to .52)</td>
<td>.15 (.05 to .27)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>14,181</td>
<td>17,959</td>
<td>19,902</td>
<td>.4 (.23 to .59)</td>
<td>.11 (.02 to .25)</td>
</tr>
<tr>
<td>Missouri</td>
<td>20,970</td>
<td>24,704</td>
<td>27,732</td>
<td>.32 (.19 to .45)</td>
<td>.12 (.02 to .23)</td>
</tr>
<tr>
<td>Montana</td>
<td>2,639</td>
<td>3,346</td>
<td>3,808</td>
<td>.44 (.26 to .65)</td>
<td>.14 (.01 to .29)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>5,444</td>
<td>6,406</td>
<td>7,215</td>
<td>.33 (.2 to .47)</td>
<td>.13 (.03 to .23)</td>
</tr>
<tr>
<td>Nevada</td>
<td>4,849</td>
<td>10,682</td>
<td>12,544</td>
<td>1.59 (1.32 to 1.88)</td>
<td>.18 (.06 to .3)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3,256</td>
<td>3,585</td>
<td>4,347</td>
<td>.34 (.2 to .49)</td>
<td>.21 (.09 to .34)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>32,043</td>
<td>29,952</td>
<td>31,500</td>
<td>-.02 (-.12 to -.1)</td>
<td>.05 (-.05 to .17)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>4,438</td>
<td>6,196</td>
<td>7,255</td>
<td>.64 (.43 to .86)</td>
<td>.17 (.04 to .33)</td>
</tr>
<tr>
<td>New York</td>
<td>72,410</td>
<td>54,802</td>
<td>56,952</td>
<td>-21 (-3 to -.11)</td>
<td>.04 (-.07 to .16)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>32,795</td>
<td>42,546</td>
<td>49,851</td>
<td>.52 (.38 to .66)</td>
<td>.17 (.07 to .28)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>2,101</td>
<td>2,196</td>
<td>2,627</td>
<td>.25 (.11 to .41)</td>
<td>.2 (.07 to .33)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Inhabitants</th>
<th>Inhabitants 95% CI</th>
<th>Sex Adjusted Mortality Rate</th>
<th>Sex Adjusted Mortality Rate 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>41,531</td>
<td>(38,927 to 44,214)</td>
<td>.29 (.17 to .42)</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>13,238</td>
<td>(12,367 to 14,052)</td>
<td>.46 (.32 to .61)</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>10,517</td>
<td>(9,805 to 11,209)</td>
<td>.57 (.41 to .73)</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>49,683</td>
<td>(46,436 to 52,913)</td>
<td>.1 (0 to .2)</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3,428</td>
<td>(3,151 to 3,714)</td>
<td>.04 (-.08 to .18)</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>21,018</td>
<td>(19,614 to 22,508)</td>
<td>.44 (.27 to .63)</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>2,377</td>
<td>(2,184 to 2,560)</td>
<td>.34 (.19 to .52)</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>22,890</td>
<td>(22,413 to 25,527)</td>
<td>.55 (.4 to .7)</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>63,820</td>
<td>(59,443 to 68,760)</td>
<td>.7 (.53 to .88)</td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>4,093</td>
<td>(3,820 to 4,390)</td>
<td>1.06 (.84 to 1.29)</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>1,621</td>
<td>(1,504 to 1,742)</td>
<td>2 (.08 to .33)</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>24,565</td>
<td>(23,079 to 26,199)</td>
<td>.37 (.24 to .51)</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>15,850</td>
<td>(14,783 to 16,941)</td>
<td>.52 (.38 to .69)</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Location</th>
<th>Total Deaths 1990-1994</th>
<th>Total Deaths 1995-1999</th>
<th>Total Deaths 2000-2004</th>
<th>Point Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>7,854 (7,310 to 8,395)</td>
<td>9,123 (8,497 to 9,747)</td>
<td>10,269 (9,366 to 11,183)</td>
<td>0.31 (-0.18 to 0.45)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>16,976 (15,812 to 18,083)</td>
<td>19,474 (18,241 to 20,714)</td>
<td>22,102 (20,356 to 24,070)</td>
<td>0.3 (-0.19 to 0.44)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1,305 (1,207 to 1,405)</td>
<td>1,787 (1,650 to 1,920)</td>
<td>1,989 (1,758 to 2,233)</td>
<td>0.53 (-0.35 to 0.73)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>178,117 (169,726 to 186,437)</td>
<td>158,680 (151,439 to 166,070)</td>
<td>165,656 (146,862 to 184,186)</td>
<td>-0.07 (-0.18 to 0.04)</td>
</tr>
<tr>
<td>Alaska</td>
<td>8,339 (7,859 to 8,854)</td>
<td>9,746 (9,118 to 10,371)</td>
<td>11,985 (10,457 to 13,562)</td>
<td>0.44 (0.24 to 0.65)</td>
</tr>
<tr>
<td>Arizona</td>
<td>124,129 (118,866 to 129,460)</td>
<td>135,582 (129,702 to 141,915)</td>
<td>148,189 (135,035 to 161,538)</td>
<td>0.19 (0.09 to 0.31)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>114,818 (110,185 to 119,875)</td>
<td>103,688 (99,087 to 108,223)</td>
<td>108,871 (99,684 to 118,038)</td>
<td>-0.05 (-0.14 to 0.04)</td>
</tr>
<tr>
<td>California</td>
<td>877,887 (833,450 to 921,783)</td>
<td>738,985 (705,015 to 775,654)</td>
<td>740,401 (668,292 to 814,383)</td>
<td>-0.16 (-0.25 to -0.06)</td>
</tr>
<tr>
<td>Colorado</td>
<td>83,199 (79,402 to 86,706)</td>
<td>77,099 (73,357 to 80,602)</td>
<td>85,799 (78,873 to 93,152)</td>
<td>0.03 (-0.06 to 0.13)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>118,689 (112,874 to 124,225)</td>
<td>78,712 (74,542 to 82,543)</td>
<td>72,934 (65,692 to 81,332)</td>
<td>-0.39 (-0.45 to -0.31)</td>
</tr>
<tr>
<td>Delaware</td>
<td>26,392 (25,300 to 27,630)</td>
<td>23,856 (22,800 to 24,889)</td>
<td>24,479 (22,664 to 26,261)</td>
<td>-0.07 (-0.15 to -0.1)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>25,769 (23,416 to 29,471)</td>
<td>19,106 (17,624 to 21,516)</td>
<td>15,684 (13,602 to 18,277)</td>
<td>-0.39 (-0.46 to -0.32)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>587,490</td>
<td>524,421</td>
<td>546,256</td>
<td>0.07</td>
<td>0.04</td>
<td>3,049</td>
<td>1,899</td>
</tr>
<tr>
<td>Georgia</td>
<td>235,844</td>
<td>222,498</td>
<td>249,265</td>
<td>0.06</td>
<td>0.12</td>
<td>3,754</td>
<td>2,259</td>
</tr>
<tr>
<td>Hawaii</td>
<td>26,920</td>
<td>26,199</td>
<td>28,310</td>
<td>0.05</td>
<td>0.08</td>
<td>2,342</td>
<td>1,488</td>
</tr>
<tr>
<td>Idaho</td>
<td>29,662</td>
<td>28,703</td>
<td>32,677</td>
<td>-0.1</td>
<td>0.14</td>
<td>2,697</td>
<td>1,639</td>
</tr>
<tr>
<td>Illinois</td>
<td>475,688</td>
<td>329,657</td>
<td>309,473</td>
<td>-0.35</td>
<td>-0.06</td>
<td>3,631</td>
<td>2,108</td>
</tr>
<tr>
<td>Indiana</td>
<td>228,397</td>
<td>182,839</td>
<td>189,237</td>
<td>-0.17</td>
<td>0.04</td>
<td>3,570</td>
<td>2,305</td>
</tr>
<tr>
<td>Iowa</td>
<td>117,393</td>
<td>80,939</td>
<td>80,516</td>
<td>-0.31</td>
<td>0</td>
<td>3,095</td>
<td>2,035</td>
</tr>
<tr>
<td>Kansas</td>
<td>92,426</td>
<td>69,343</td>
<td>69,326</td>
<td>-0.25</td>
<td>0</td>
<td>3,011</td>
<td>1,912</td>
</tr>
<tr>
<td>Kentucky</td>
<td>168,778</td>
<td>144,253</td>
<td>150,671</td>
<td>-0.11</td>
<td>0.04</td>
<td>3,977</td>
<td>2,688</td>
</tr>
<tr>
<td>Louisiana</td>
<td>177,792</td>
<td>140,938</td>
<td>150,091</td>
<td>-0.16</td>
<td>0.07</td>
<td>4,102</td>
<td>2,701</td>
</tr>
<tr>
<td>Maine</td>
<td>48,837</td>
<td>32,743</td>
<td>32,416</td>
<td>-0.34</td>
<td>-0.01</td>
<td>3,265</td>
<td>1,671</td>
</tr>
<tr>
<td>Maryland</td>
<td>160,880</td>
<td>139,370</td>
<td>137,841</td>
<td>-0.14</td>
<td>-0.01</td>
<td>3,260</td>
<td>2,031</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>227,062</td>
<td>144,097</td>
<td>137,774</td>
<td>-0.39</td>
<td>-0.04</td>
<td>3,102</td>
<td>1,637</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2017 Population</th>
<th>Mean Age</th>
<th>Female Survival Rate</th>
<th>Male Survival Rate</th>
<th>Short- and Long-term Survival Rate</th>
<th>30-Day Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>384,426</td>
<td>-19</td>
<td>-0.19</td>
<td>-0.03</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>Minnesota</td>
<td>135,828</td>
<td>311,109</td>
<td>2,317</td>
<td>2,071</td>
<td>-0.45</td>
<td>-0.11</td>
</tr>
<tr>
<td>Mississippi</td>
<td>127,162</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>Missouri</td>
<td>225,935</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>Montana</td>
<td>25,749</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>Nebraska</td>
<td>60,287</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>Nevada</td>
<td>41,564</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>37,536</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>New Jersey</td>
<td>321,171</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>New Mexico</td>
<td>40,589</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>New York</td>
<td>845,708</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>North Carolina</td>
<td>269,864</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
<tr>
<td>North Dakota</td>
<td>23,683</td>
<td>1,109,109</td>
<td>3,753</td>
<td>2,692</td>
<td>-0.35</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>472,793 (455,276 to 491,140)</td>
<td>346,104 (332,919 to 361,078)</td>
<td>338,677 (315,308 to 363,269)</td>
<td>-28 (-.34 to -.23)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>149,288 (144,208 to 154,813)</td>
<td>135,785 (129,840 to 141,399)</td>
<td>141,349 (131,851 to 151,291)</td>
<td>-05 (-.12 to -.02)</td>
</tr>
<tr>
<td>Oregon</td>
<td>101,173 (97,027 to 105,183)</td>
<td>75,072 (71,204 to 78,429)</td>
<td>75,215 (69,441 to 80,684)</td>
<td>-26 (-.32 to -.19)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>570,975 (550,352 to 591,700)</td>
<td>385,413 (369,935 to 400,927)</td>
<td>357,853 (334,678 to 382,671)</td>
<td>-37 (-.42 to -.32)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>44,503 (42,397 to 46,440)</td>
<td>30,926 (29,192 to 32,459)</td>
<td>26,979 (24,257 to 30,129)</td>
<td>-.39 (-.46 to -.32)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>143,998 (136,915 to 151,080)</td>
<td>127,900 (121,605 to 133,934)</td>
<td>144,368 (130,562 to 158,830)</td>
<td>0 (-.11 to .12)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>27,883 (26,448 to 29,245)</td>
<td>20,275 (19,101 to 21,392)</td>
<td>20,846 (18,734 to 23,058)</td>
<td>-25 (-.33 to -.17)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>223,098 (214,471 to 232,238)</td>
<td>204,634 (196,152 to 214,869)</td>
<td>224,821 (207,122 to 240,756)</td>
<td>.01 (-.07 to .09)</td>
</tr>
<tr>
<td>Texas</td>
<td>556,778 (533,401 to 584,304)</td>
<td>530,870 (508,128 to 555,611)</td>
<td>601,120 (550,131 to 645,417)</td>
<td>.08 (-.02 to .18)</td>
</tr>
<tr>
<td>Utah</td>
<td>35,458 (34,027 to 37,165)</td>
<td>34,305 (32,714 to 36,084)</td>
<td>40,333 (37,404 to 43,549)</td>
<td>.14 (.05 to .24)</td>
</tr>
<tr>
<td>Vermont</td>
<td>18,928 (18,135 to 19,776)</td>
<td>13,211 (12,579 to 13,843)</td>
<td>13,601 (12,507 to 14,759)</td>
<td>-28 (-.34 to -.22)</td>
</tr>
<tr>
<td>Virginia</td>
<td>212,763 (205,179 to 220,519)</td>
<td>177,391 (170,168 to 184,515)</td>
<td>182,416 (169,337 to 196,993)</td>
<td>-.14 (-.21 to -.07)</td>
</tr>
<tr>
<td>Washington</td>
<td>145,587 (140,049 to 151,748)</td>
<td>121,015 (115,770 to 125,984)</td>
<td>126,659 (117,008 to 136,558)</td>
<td>-.13 (-.2 to -.05)</td>
</tr>
<tr>
<td>State</td>
<td>2017_death_rate</td>
<td>2016_death_rate</td>
<td>Death_rate_change</td>
<td>Increase</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>98,907 (94,895 to 102,945)</td>
<td>71,439 (68,048 to 74,676)</td>
<td>69,955 (64,497 to 75,515)</td>
<td>-.29 (-.35 to -.23)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>182,701 (176,082 to 189,395)</td>
<td>127,594 (122,502 to 132,757)</td>
<td>131,371 (122,115 to 140,317)</td>
<td>-.28 (-.33 to -.22)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>12,581 (11,963 to 13,248)</td>
<td>12,252 (11,582 to 12,911)</td>
<td>12,679 (11,275 to 14,189)</td>
<td>.01 (-.11 to .14)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>30,848 (27,801 to 34,170)</td>
<td>36,632 (32,794 to 40,346)</td>
<td>40,364 (35,622 to 45,412)</td>
<td>.31 (.18 to .45)</td>
</tr>
<tr>
<td>Alaska</td>
<td>1,304 (1,154 to 1,452)</td>
<td>2,403 (2,085 to 2,691)</td>
<td>3,011 (2,607 to 3,410)</td>
<td>1.31 (1.09 to 1.55)</td>
</tr>
<tr>
<td>Arizona</td>
<td>18,595 (16,406 to 20,816)</td>
<td>30,431 (26,738 to 34,034)</td>
<td>36,255 (31,017 to 41,301)</td>
<td>.95 (.79 to 1.11)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>21,520 (19,284 to 23,723)</td>
<td>22,430 (19,986 to 24,910)</td>
<td>24,823 (21,983 to 27,873)</td>
<td>.15 (.06 to .26)</td>
</tr>
<tr>
<td>California</td>
<td>152,209 (135,607 to 168,527)</td>
<td>164,208 (143,021 to 184,023)</td>
<td>184,248 (160,092 to 212,519)</td>
<td>.21 (.1 to .32)</td>
</tr>
<tr>
<td>Colorado</td>
<td>13,882 (12,265 to 15,490)</td>
<td>20,456 (18,145 to 22,695)</td>
<td>24,458 (21,371 to 27,451)</td>
<td>.76 (.62 to .91)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>16,904 (14,747 to 19,065)</td>
<td>17,818 (15,321 to 20,119)</td>
<td>18,157 (15,683 to 20,827)</td>
<td>.07 (-.03 to .18)</td>
</tr>
<tr>
<td>Delaware</td>
<td>3,442 (3,039 to 3,854)</td>
<td>4,678 (4,085 to 5,248)</td>
<td>5,477 (4,752 to 6,181)</td>
<td>.59 (.46 to .74)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>4,079 (3,619 to 4,682)</td>
<td>2,532 (2,181 to 2,893)</td>
<td>2,329 (1,956 to 2,698)</td>
<td>-.43 (-.49 to -.37)</td>
</tr>
<tr>
<td>State</td>
<td>Mean (95% CI)</td>
<td>Median (95% CI)</td>
<td>Mean (95% CI)</td>
<td>Median (95% CI)</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Florida</td>
<td>88,804 (78,144 to 99,954)</td>
<td>109,177 (94,538 to 123,084)</td>
<td>129,062 (111,393 to 148,010)</td>
<td>.45 (.33 to .58)</td>
</tr>
<tr>
<td>Georgia</td>
<td>42,004 (37,880 to 46,556)</td>
<td>52,335 (46,380 to 57,731)</td>
<td>63,822 (56,029 to 72,167)</td>
<td>.52 (.38 to .66)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>5,101 (4,499 to 5,706)</td>
<td>7,023 (6,102 to 7,886)</td>
<td>8,007 (7,012 to 9,015)</td>
<td>.57 (.45 to .7)</td>
</tr>
<tr>
<td>Idaho</td>
<td>5,649 (4,996 to 6,340)</td>
<td>8,184 (7,251 to 9,104)</td>
<td>9,711 (8,562 to 10,977)</td>
<td>.72 (.55 to .9)</td>
</tr>
<tr>
<td>Illinois</td>
<td>68,366 (60,936 to 76,325)</td>
<td>70,038 (60,906 to 78,298)</td>
<td>72,341 (63,343 to 81,340)</td>
<td>.06 (-.02 to .15)</td>
</tr>
<tr>
<td>Indiana</td>
<td>35,997 (32,157 to 40,117)</td>
<td>37,690 (33,035 to 42,153)</td>
<td>41,713 (36,570 to 47,165)</td>
<td>.16 (.06 to .28)</td>
</tr>
<tr>
<td>Iowa</td>
<td>19,237 (17,114 to 21,350)</td>
<td>19,894 (17,528 to 22,177)</td>
<td>20,274 (17,733 to 22,775)</td>
<td>.05 (-.03 to .15)</td>
</tr>
<tr>
<td>Kansas</td>
<td>15,590 (13,829 to 17,461)</td>
<td>17,553 (15,573 to 19,650)</td>
<td>18,419 (16,150 to 20,780)</td>
<td>.18 (.06 to .3)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>24,330 (21,760 to 26,938)</td>
<td>26,415 (23,304 to 29,311)</td>
<td>29,333 (25,820 to 32,766)</td>
<td>.21 (.11 to .3)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>27,082 (24,212 to 30,094)</td>
<td>29,529 (26,255 to 32,625)</td>
<td>33,271 (29,667 to 37,056)</td>
<td>.23 (.13 to .34)</td>
</tr>
<tr>
<td>Maine</td>
<td>6,980 (6,177 to 7,857)</td>
<td>8,092 (6,995 to 9,083)</td>
<td>8,902 (7,727 to 10,002)</td>
<td>.28 (.16 to .39)</td>
</tr>
<tr>
<td>Maryland</td>
<td>24,648 (21,729 to 27,460)</td>
<td>28,513 (24,994 to 31,794)</td>
<td>31,622 (27,439 to 35,996)</td>
<td>.28 (.17 to .39)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>32,762 (28,867 to 36,407)</td>
<td>33,603 (29,147 to 37,816)</td>
<td>35,375 (30,394 to 39,972)</td>
<td>.08 (-.01 to .17)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Michigan</th>
<th>Minnesota</th>
<th>Mississippi</th>
<th>Missouri</th>
<th>Montana</th>
<th>Nevada</th>
<th>New Hampshire</th>
<th>New Jersey</th>
<th>New Mexico</th>
<th>New York</th>
<th>North Carolina</th>
<th>North Dakota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52,685</td>
<td>56,228</td>
<td>61,023</td>
<td>30,336</td>
<td>26,843</td>
<td>36,312</td>
<td>5,702</td>
<td>6,105</td>
<td>6,257</td>
<td>8,857</td>
<td>66,434</td>
<td>3,877</td>
</tr>
<tr>
<td></td>
<td>(46,849 to 58,483)</td>
<td>(49,046 to 62,602)</td>
<td>(52,952 to 68,741)</td>
<td>(26,087 to 34,200)</td>
<td>(23,487 to 30,124)</td>
<td>(31,790 to 40,504)</td>
<td>(5,041 to 6,412)</td>
<td>(5,231 to 6,924)</td>
<td>(5,537 to 6,987)</td>
<td>(7,288 to 10,028)</td>
<td>(56,759 to 76,417)</td>
<td>(3,442 to 4,306)</td>
</tr>
<tr>
<td></td>
<td>.16</td>
<td>.15</td>
<td>.21</td>
<td>.18</td>
<td>.35</td>
<td>.11</td>
<td>.10</td>
<td>.31</td>
<td>.02</td>
<td>.71</td>
<td>.13</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>(.07 to .25)</td>
<td>(.05 to .26)</td>
<td>(.09 to .34)</td>
<td>(.09 to .28)</td>
<td>(.22 to .48)</td>
<td>(.03 to .2)</td>
<td>(.06 to .11)</td>
<td>(.19 to .43)</td>
<td>(.06 to .11)</td>
<td>(.55 to .88)</td>
<td>(-.22 to -.04)</td>
<td>(-.03 to .15)</td>
</tr>
<tr>
<td></td>
<td>.09</td>
<td>.13</td>
<td>.1</td>
<td>.09</td>
<td>.16</td>
<td>.06</td>
<td>.1</td>
<td>.03</td>
<td>.02</td>
<td>.21</td>
<td>.1</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>(.01 to .16)</td>
<td>(.05 to .22)</td>
<td>(.02 to .23)</td>
<td>(.01 to .18)</td>
<td>(.08 to .27)</td>
<td>(.01 to .16)</td>
<td>(.05 to .13)</td>
<td>(.05 to .12)</td>
<td>(.1 to .33)</td>
<td>(.1 to .33)</td>
<td>(-.22 to .04)</td>
<td>(-.03 to .15)</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>477</td>
<td>631</td>
<td>490</td>
<td>474</td>
<td>472</td>
<td>442</td>
<td>436</td>
<td>405</td>
<td>424</td>
<td>442</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>(445 to 556)</td>
<td>(424 to 533)</td>
<td>(572 to 695)</td>
<td>(435 to 545)</td>
<td>(418 to 533)</td>
<td>(419 to 525)</td>
<td>(389 to 497)</td>
<td>(385 to 488)</td>
<td>(359 to 452)</td>
<td>(357 to 457)</td>
<td>(389 to 497)</td>
<td>(387 to 485)</td>
</tr>
<tr>
<td></td>
<td>(-.28 to -.16)</td>
<td>(-.32 to -.19)</td>
<td>(-.23 to -.05)</td>
<td>(-.22 to -.08)</td>
<td>(-.3 to -.15)</td>
<td>(.17 to .36)</td>
<td>(.17 to .36)</td>
<td>(.10 to .2)</td>
<td>(.25 to .35)</td>
<td>(-.27 to -.14)</td>
<td>(-.2 to -.07)</td>
<td>(-.16 to -.06)</td>
</tr>
<tr>
<td></td>
<td>-.22</td>
<td>.19</td>
<td>.07</td>
<td>-.22</td>
<td>.19</td>
<td>.26</td>
<td>.1</td>
<td>.1</td>
<td>.17</td>
<td>.35</td>
<td>.38</td>
<td>-.17</td>
</tr>
<tr>
<td></td>
<td>(-.13 to 0)</td>
<td>(.05 to .16)</td>
<td>(.01 to .1)</td>
<td>(-.3 to -.19)</td>
<td>(.11 to .27)</td>
<td>(.02 to .2)</td>
<td>(.04 to .28)</td>
<td>(.04 to .28)</td>
<td>(.25 to .35)</td>
<td>(.20 to .27)</td>
<td>(-.16 to -.05)</td>
<td>(-.24 to -.19)</td>
</tr>
<tr>
<td></td>
<td>.09</td>
<td>.07</td>
<td>.05</td>
<td>.07</td>
<td>.03</td>
<td>.06</td>
<td>.03</td>
<td>.08</td>
<td>.06</td>
<td>.04</td>
<td>.24</td>
<td>-.1</td>
</tr>
<tr>
<td></td>
<td>(.01 to .14)</td>
<td>(.14 to .01)</td>
<td>(.14 to .04)</td>
<td>(.14 to .00)</td>
<td>(.05 to .12)</td>
<td>(.05 to .13)</td>
<td>(.05 to .12)</td>
<td>(.16 to .05)</td>
<td>(.16 to .04)</td>
<td>(.16 to .04)</td>
<td>(-.16 to -.04)</td>
<td>(-.24 to -.04)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Deaths 2014</th>
<th>95% CI</th>
<th>Deaths 2015</th>
<th>95% CI</th>
<th>Deaths 2016</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>63,208</td>
<td>(56,034 to 70,895)</td>
<td>72,500</td>
<td>(63,423 to 81,050)</td>
<td>77,738</td>
<td>(68,454 to 86,318)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>22,205</td>
<td>(19,861 to 24,756)</td>
<td>25,713</td>
<td>(22,916 to 28,412)</td>
<td>27,615</td>
<td>(24,418 to 30,686)</td>
</tr>
<tr>
<td>Oregon</td>
<td>20,747</td>
<td>(18,656 to 22,860)</td>
<td>24,913</td>
<td>(22,283 to 27,737)</td>
<td>26,551</td>
<td>(23,382 to 29,603)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>77,600</td>
<td>(68,788 to 86,500)</td>
<td>82,364</td>
<td>(72,346 to 92,124)</td>
<td>82,655</td>
<td>(72,523 to 93,152)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>5,304</td>
<td>(4,674 to 5,992)</td>
<td>5,328</td>
<td>(4,617 to 6,052)</td>
<td>5,285</td>
<td>(4,459 to 6,032)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>27,187</td>
<td>(24,695 to 29,786)</td>
<td>31,732</td>
<td>(28,371 to 35,081)</td>
<td>39,045</td>
<td>(34,581 to 43,498)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>4,275</td>
<td>(3,781 to 4,782)</td>
<td>4,713</td>
<td>(4,097 to 5,268)</td>
<td>5,175</td>
<td>(4,490 to 5,858)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>38,465</td>
<td>(34,511 to 42,349)</td>
<td>43,935</td>
<td>(38,928 to 48,705)</td>
<td>50,282</td>
<td>(44,567 to 55,622)</td>
</tr>
<tr>
<td>Texas</td>
<td>88,707</td>
<td>(79,300 to 98,473)</td>
<td>114,563</td>
<td>(100,533 to 127,749)</td>
<td>142,559</td>
<td>(124,877 to 159,088)</td>
</tr>
<tr>
<td>Utah</td>
<td>6,912</td>
<td>(6,161 to 7,682)</td>
<td>10,558</td>
<td>(9,411 to 11,783)</td>
<td>13,333</td>
<td>(11,825 to 14,840)</td>
</tr>
<tr>
<td>Vermont</td>
<td>2,816</td>
<td>(2,492 to 3,155)</td>
<td>3,153</td>
<td>(2,747 to 3,584)</td>
<td>3,613</td>
<td>(3,128 to 4,078)</td>
</tr>
<tr>
<td>Virginia</td>
<td>36,459</td>
<td>(32,643 to 40,032)</td>
<td>43,015</td>
<td>(37,903 to 48,026)</td>
<td>48,587</td>
<td>(42,815 to 54,571)</td>
</tr>
<tr>
<td>Washington</td>
<td>28,069</td>
<td>(24,924 to 30,965)</td>
<td>36,785</td>
<td>(32,376 to 41,005)</td>
<td>40,442</td>
<td>(35,471 to 45,341)</td>
</tr>
<tr>
<td>State</td>
<td>Urban Mid-Year</td>
<td>Rural Mid-Year</td>
<td>Urban</td>
<td>Rural</td>
<td>DWAD</td>
<td>Rural DWAD</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>12,359 (11,038 to 13,722)</td>
<td>13,280 (11,654 to 14,768)</td>
<td>.15 (.05 to .23)</td>
<td>.07 (-.01 to .15)</td>
<td>.1</td>
<td>(.17 to .03)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>30,224 (26,998 to 33,482)</td>
<td>33,285 (29,159 to 37,320)</td>
<td>.16 (.07 to .25)</td>
<td>.06 (-.03 to .14)</td>
<td>.16 (.07 to .25)</td>
<td>.06 (-.03 to .14)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2,071 (1,836 to 2,316)</td>
<td>2,703 (2,363 to 3,025)</td>
<td>.42 (.28 to .56)</td>
<td>.09 (0 to .19)</td>
<td>.42 (.28 to .56)</td>
<td>.09 (0 to .19)</td>
</tr>
<tr>
<td>Alabama</td>
<td>520 (401 to 848)</td>
<td>917 (580 to 1,101)</td>
<td>.84 (.12 to 1.5)</td>
<td>.84 (.12 to 1.5)</td>
<td>0 (.02 to 1.19)</td>
<td>.03 (-1.7 to .13)</td>
</tr>
<tr>
<td>Alaska</td>
<td>79 (63 to 113)</td>
<td>126 (74 to 161)</td>
<td>.68 (-.03 to 1.32)</td>
<td>.68 (-.03 to 1.32)</td>
<td>0 (-.14 to .17)</td>
<td>.03 (-1.7 to .13)</td>
</tr>
<tr>
<td>Arizona</td>
<td>409 (321 to 615)</td>
<td>981 (713 to 1,148)</td>
<td>1.48 (.4 to 2.31)</td>
<td>1.48 (.4 to 2.31)</td>
<td>0 (-.14 to .17)</td>
<td>.03 (-1.7 to .13)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>297 (236 to 453)</td>
<td>570 (373 to 688)</td>
<td>.98 (.24 to 1.64)</td>
<td>.98 (.24 to 1.64)</td>
<td>.48 (.24 to 1.64)</td>
<td>.03 (-1.7 to .13)</td>
</tr>
<tr>
<td>California</td>
<td>3,445 (2,716 to 5,046)</td>
<td>4,613 (3,193 to 5,403)</td>
<td>.32 (-.26 to .7)</td>
<td>.32 (-.26 to .7)</td>
<td>.32 (-.26 to .7)</td>
<td>.32 (-.26 to .7)</td>
</tr>
<tr>
<td>Colorado</td>
<td>377 (313 to 511)</td>
<td>738 (443 to 893)</td>
<td>1.2 (.31 to 1.96)</td>
<td>1.2 (.31 to 1.96)</td>
<td>.11 (-.03 to .26)</td>
<td>.11 (-.03 to .26)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>341 (262 to 492)</td>
<td>435 (294 to 511)</td>
<td>.27 (-.26 to .69)</td>
<td>.27 (-.26 to .69)</td>
<td>.27 (-.26 to .69)</td>
<td>.27 (-.26 to .69)</td>
</tr>
<tr>
<td>Delaware</td>
<td>87 (72 to 118)</td>
<td>151 (85 to 192)</td>
<td>.82 (.11 to 1.45)</td>
<td>.82 (.11 to 1.45)</td>
<td>.82 (.11 to 1.45)</td>
<td>.82 (.11 to 1.45)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>138 (74 to 395)</td>
<td>115 (66 to 172)</td>
<td>.22 (-.73 to .16)</td>
<td>.22 (-.73 to .16)</td>
<td>.22 (-.73 to .16)</td>
<td>.22 (-.73 to .16)</td>
</tr>
</tbody>
</table>

Myocarditis

<table>
<thead>
<tr>
<th>State</th>
<th>Mid-Year</th>
<th>DWAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>520 (401 to 848)</td>
<td>.84 (.12 to 1.5)</td>
</tr>
<tr>
<td>Alaska</td>
<td>79 (63 to 113)</td>
<td>.68 (-.03 to 1.32)</td>
</tr>
<tr>
<td>Arizona</td>
<td>409 (321 to 615)</td>
<td>1.48 (.4 to 2.31)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>297 (236 to 453)</td>
<td>.98 (.24 to 1.64)</td>
</tr>
<tr>
<td>California</td>
<td>3,445 (2,716 to 5,046)</td>
<td>.32 (-.26 to .7)</td>
</tr>
<tr>
<td>Colorado</td>
<td>377 (313 to 511)</td>
<td>1.2 (.31 to 1.96)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>341 (262 to 492)</td>
<td>.27 (-.26 to .69)</td>
</tr>
<tr>
<td>Delaware</td>
<td>87 (72 to 118)</td>
<td>.82 (.11 to 1.45)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>138 (74 to 395)</td>
<td>.22 (-.73 to .16)</td>
</tr>
<tr>
<td>State</td>
<td>Male 1990 to 2010 Median</td>
<td>Female 1990 to 2010 Median</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Florida</td>
<td>1,540</td>
<td>3,024</td>
</tr>
<tr>
<td>Georgia</td>
<td>927</td>
<td>1,861</td>
</tr>
<tr>
<td>Hawaii</td>
<td>109</td>
<td>187</td>
</tr>
<tr>
<td>Idaho</td>
<td>100</td>
<td>186</td>
</tr>
<tr>
<td>Illinois</td>
<td>1,504</td>
<td>2,090</td>
</tr>
<tr>
<td>Indiana</td>
<td>620</td>
<td>1,113</td>
</tr>
<tr>
<td>Iowa</td>
<td>293</td>
<td>420</td>
</tr>
<tr>
<td>Kansas</td>
<td>278</td>
<td>471</td>
</tr>
<tr>
<td>Kentucky</td>
<td>422</td>
<td>725</td>
</tr>
<tr>
<td>Louisiana</td>
<td>557</td>
<td>882</td>
</tr>
<tr>
<td>Maine</td>
<td>124</td>
<td>176</td>
</tr>
<tr>
<td>Maryland</td>
<td>724</td>
<td>1,247</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>706</td>
<td>936</td>
</tr>
<tr>
<td>Region</td>
<td>Mean (95% CI)</td>
<td>Michigan</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Minnesota</td>
<td>430 (350 to 623)</td>
<td>696 (378 to 850)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>326 (245 to 593)</td>
<td>566 (340 to 757)</td>
</tr>
<tr>
<td>Missouri</td>
<td>599 (465 to 901)</td>
<td>968 (710 to 1,131)</td>
</tr>
<tr>
<td>Montana</td>
<td>113 (90 to 130)</td>
<td>186 (101 to 242)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>182 (153 to 235)</td>
<td>271 (162 to 329)</td>
</tr>
<tr>
<td>Nevada</td>
<td>122 (85 to 235)</td>
<td>338 (263 to 424)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>106 (78 to 178)</td>
<td>139 (100 to 185)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>966 (786 to 1,333)</td>
<td>1,371 (861 to 1,628)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>178 (141 to 271)</td>
<td>301 (223 to 355)</td>
</tr>
<tr>
<td>New York</td>
<td>2,692 (2,127 to 3,885)</td>
<td>3,091 (2,053 to 3,946)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>879 (735 to 1,178)</td>
<td>1,700 (1,009 to 2,113)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>78 (65 to 106)</td>
<td>104 (60 to 128)</td>
</tr>
<tr>
<td>State</td>
<td>Count 1</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Ohio</td>
<td>1,362</td>
<td>(1,138 to 1,788)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>349</td>
<td>(256 to 562)</td>
</tr>
<tr>
<td>Oregon</td>
<td>276</td>
<td>(212 to 410)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1,257</td>
<td>(970 to 1,888)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>134</td>
<td>(110 to 209)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>480</td>
<td>(384 to 688)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>90</td>
<td>(74 to 122)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>593</td>
<td>(471 to 886)</td>
</tr>
<tr>
<td>Texas</td>
<td>2,120</td>
<td>(1,661 to 3,033)</td>
</tr>
<tr>
<td>Utah</td>
<td>208</td>
<td>(169 to 245)</td>
</tr>
<tr>
<td>Vermont</td>
<td>60</td>
<td>(51 to 82)</td>
</tr>
<tr>
<td>Virginia</td>
<td>675</td>
<td>(526 to 974)</td>
</tr>
<tr>
<td>Washington</td>
<td>465</td>
<td>(354 to 679)</td>
</tr>
<tr>
<td>State</td>
<td>Rate 1 (95% CI)</td>
<td>Rate 2 (95% CI)</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>235 (199 to 314)</td>
<td>376 (231 to 463)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>487 (401 to 661)</td>
<td>808 (484 to 985)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>60 (52 to 73)</td>
<td>100 (60 to 126)</td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>8,193 (6,217 to 9,255)</td>
<td>8,531 (7,625 to 10,243)</td>
</tr>
<tr>
<td>Alaska</td>
<td>565 (504 to 660)</td>
<td>693 (585 to 955)</td>
</tr>
<tr>
<td>Arizona</td>
<td>6,188 (4,667 to 6,935)</td>
<td>7,714 (6,810 to 9,753)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>3,891 (3,453 to 4,379)</td>
<td>4,525 (4,019 to 5,862)</td>
</tr>
<tr>
<td>California</td>
<td>59,360 (37,616 to 69,634)</td>
<td>53,219 (43,401 to 58,715)</td>
</tr>
<tr>
<td>Colorado</td>
<td>3,617 (3,253 to 4,343)</td>
<td>4,536 (3,862 to 6,468)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>6,013 (4,334 to 6,781)</td>
<td>5,009 (4,377 to 5,757)</td>
</tr>
<tr>
<td>Delaware</td>
<td>1,355 (980 to 1,540)</td>
<td>1,602 (1,325 to 1,773)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>2,400 (1,325 to 3,083)</td>
<td>1,260 (1,054 to 1,576)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>2016 Total (95% CI)</th>
<th>2017 Total (95% CI)</th>
<th>2018 Total (95% CI)</th>
<th>2019 Total (95% CI)</th>
<th>2020 Total (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>31,786 (21,066 to 36,860)</td>
<td>35,391 (29,006 to 39,096)</td>
<td>39,360 (33,614 to 45,288)</td>
<td>37,347 (31,981 to 42,714)</td>
<td>40,495 (35,039 to 45,951)</td>
</tr>
<tr>
<td>Georgia</td>
<td>14,274 (9,114 to 16,683)</td>
<td>15,170 (12,885 to 17,039)</td>
<td>16,222 (14,019 to 20,066)</td>
<td>19,050 (15,597 to 22,503)</td>
<td>157 (133 to 179)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2,588 (1,243 to 3,165)</td>
<td>2,643 (1,602 to 3,085)</td>
<td>2,914 (1,921 to 3,420)</td>
<td>223 (107 to 272)</td>
<td>165 (100 to 193)</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,134 (1,018 to 1,358)</td>
<td>1,473 (1,259 to 2,046)</td>
<td>1,804 (1,468 to 2,604)</td>
<td>108 (97 to 130)</td>
<td>90 (77 to 124)</td>
</tr>
<tr>
<td>Illinois</td>
<td>25,393 (17,339 to 29,048)</td>
<td>21,204 (18,377 to 23,289)</td>
<td>20,954 (18,504 to 24,479)</td>
<td>206 (140 to 237)</td>
<td>148 (129 to 164)</td>
</tr>
<tr>
<td>Indiana</td>
<td>10,495 (7,631 to 11,876)</td>
<td>11,237 (9,523 to 12,376)</td>
<td>12,677 (10,663 to 14,516)</td>
<td>174 (127 to 197)</td>
<td>155 (132 to 171)</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,172 (3,512 to 4,616)</td>
<td>3,411 (2,957 to 4,555)</td>
<td>3,704 (3,085 to 5,236)</td>
<td>127 (107 to 141)</td>
<td>92 (79 to 123)</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,901 (3,083 to 4,334)</td>
<td>3,601 (3,215 to 4,520)</td>
<td>3,700 (3,031 to 5,170)</td>
<td>141 (111 to 156)</td>
<td>111 (98 to 140)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>6,038 (5,134 to 6,577)</td>
<td>6,402 (5,702 to 8,335)</td>
<td>6,922 (5,744 to 10,002)</td>
<td>150 (128 to 164)</td>
<td>130 (116 to 170)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>9,069 (6,393 to 10,373)</td>
<td>9,059 (7,447 to 10,256)</td>
<td>9,700 (8,517 to 11,385)</td>
<td>211 (149 to 241)</td>
<td>188 (155 to 215)</td>
</tr>
<tr>
<td>Maine</td>
<td>1,933 (1,556 to 2,148)</td>
<td>1,820 (1,637 to 2,234)</td>
<td>1,903 (1,633 to 2,516)</td>
<td>0 (-19 to .39)</td>
<td>4 (-.08 to .2)</td>
</tr>
<tr>
<td>Maryland</td>
<td>13,424 (7,286 to 16,150)</td>
<td>9,879 (8,516 to 11,381)</td>
<td>10,829 (9,469 to 12,461)</td>
<td>70 (147 to 324)</td>
<td>155 (134 to 179)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>9,334 (7,664 to 10,282)</td>
<td>7,443 (6,476 to 9,978)</td>
<td>7,713 (6,416 to 11,309)</td>
<td>138 (112 to 152)</td>
<td>93 (80 to 126)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>20,215 (13,477 to 23,316)</td>
<td>18,700 (15,473 to 20,644)</td>
<td>-.05 (-.24 to .36)</td>
<td>18,713 (16,674 to 21,273)</td>
<td>18,700 (16,674 to 21,273)</td>
<td>-.05 (-.24 to .36)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>5,498 (4,663 to 6,158)</td>
<td>5,111 (4,458 to 5,891)</td>
<td>-.02 (-.17 to .43)</td>
<td>5,604 (4,624 to 7,892)</td>
<td>5,604 (4,624 to 7,892)</td>
<td>-.02 (-.17 to .43)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>5,778 (3,948 to 6,648)</td>
<td>5,545 (4,782 to 6,689)</td>
<td>-.04 (-.22 to .62)</td>
<td>5,797 (4,901 to 7,530)</td>
<td>5,797 (4,901 to 7,530)</td>
<td>-.04 (-.22 to .62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>9,765 (7,525 to 10,927)</td>
<td>9,707 (8,820 to 11,109)</td>
<td>.12 (-.06 to .49)</td>
<td>10,824 (9,721 to 12,901)</td>
<td>10,824 (9,721 to 12,901)</td>
<td>.12 (-.06 to .49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>1,003 (906 to 1,182)</td>
<td>1,071 (885 to 1,256)</td>
<td>.16 (-.1 to .69)</td>
<td>1,168 (894 to 1,848)</td>
<td>1,168 (894 to 1,848)</td>
<td>.16 (-.1 to .69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>2,149 (1,930 to 2,439)</td>
<td>2,017 (1,744 to 2,716)</td>
<td>.02 (-.16 to .39)</td>
<td>2,198 (1,819 to 3,149)</td>
<td>2,198 (1,819 to 3,149)</td>
<td>.02 (-.16 to .39)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>2,739 (1,819 to 3,178)</td>
<td>4,765 (3,875 to 5,308)</td>
<td>.85 (4.3 to 1.75)</td>
<td>4,910 (4,336 to 5,825)</td>
<td>4,910 (4,336 to 5,825)</td>
<td>.85 (4.3 to 1.75)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,371 (1,216 to 1,600)</td>
<td>1,363 (1,159 to 1,908)</td>
<td>.13 (-.08 to .53)</td>
<td>1,552 (1,260 to 2,296)</td>
<td>1,552 (1,260 to 2,296)</td>
<td>.13 (-.08 to .53)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>15,461 (11,217 to 17,505)</td>
<td>13,049 (11,530 to 14,527)</td>
<td>-.09 (-.26 to .21)</td>
<td>13,794 (12,058 to 16,182)</td>
<td>13,794 (12,058 to 16,182)</td>
<td>-.09 (-.26 to .21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>2,039 (1,744 to 2,249)</td>
<td>2,286 (1,961 to 3,110)</td>
<td>.23 (-.07 to .9)</td>
<td>2,499 (1,965 to 3,784)</td>
<td>2,499 (1,965 to 3,784)</td>
<td>.23 (-.07 to .9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>30,241 (26,488 to 33,538)</td>
<td>22,363 (19,041 to 31,134)</td>
<td>-.23 (-.39 to .11)</td>
<td>23,284 (18,547 to 34,318)</td>
<td>23,284 (18,547 to 34,318)</td>
<td>-.23 (-.39 to .11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>13,092 (9,506 to 14,878)</td>
<td>14,768 (12,710 to 16,551)</td>
<td>.24 (.01 to .76)</td>
<td>15,880 (14,128 to 19,471)</td>
<td>15,880 (14,128 to 19,471)</td>
<td>.24 (.01 to .76)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>733 (646 to 930)</td>
<td>668 (554 to 990)</td>
<td>.06 (-.16 to .47)</td>
<td>784 (602 to 1,225)</td>
<td>784 (602 to 1,225)</td>
<td>.06 (-.16 to .47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Incidence (95% CI)</td>
<td>Rate Change (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>23,333 (15,776 to 26,785)</td>
<td>-0.09 (-0.28 to 0.38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>5,272 (4,400 to 5,753)</td>
<td>0.14 (-0.11 to 0.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>4,027 (3,475 to 4,469)</td>
<td>0.02 (-0.12 to 0.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>28,052 (18,734 to 32,491)</td>
<td>0.03 (-0.14 to 0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,289 (1,125 to 1,695)</td>
<td>-0.1 (-0.26 to 0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>7,599 (5,120 to 8,833)</td>
<td>-0.15 (-0.33 to 0.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>823 (723 to 1,071)</td>
<td>-0.2 (-0.07 to 0.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>9,452 (7,153 to 10,633)</td>
<td>-0.16 (-0.03 to 0.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>28,999 (21,866 to 32,505)</td>
<td>0.04 (-0.23 to 0.82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>1,713 (1,493 to 1,984)</td>
<td>-0.19 (-0.07 to 0.34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>730 (640 to 826)</td>
<td>-0.64 (.35 to 1.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>11,600 (8,166 to 13,212)</td>
<td>-0.01 (-0.19 to 0.39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>7,245 (5,642 to 8,049)</td>
<td>-0.07 (-0.07 to 0.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Δ (Year 1 to Year 2)</th>
<th>Δ (Year 2 to Year 3)</th>
<th>Δ (Year 1 to Year 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>3,177</td>
<td>2,851</td>
<td>3,045</td>
<td>-0.04 (-.24 to .42)</td>
<td>.06 (-.05 to .21)</td>
<td>.06 (-.05 to .21)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>8,416</td>
<td>7,495</td>
<td>7,831</td>
<td>-0.05 (-.24 to .41)</td>
<td>.04 (-.07 to .21)</td>
<td>.04 (-.07 to .21)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>489</td>
<td>586</td>
<td>675</td>
<td>.37 (.11 to .85)</td>
<td>.15 (-.01 to .31)</td>
<td>.15 (-.01 to .31)</td>
</tr>
<tr>
<td>Other cardiovascular</td>
<td>14,793</td>
<td>16,939</td>
<td>19,164</td>
<td>.3 (-.17 to .44)</td>
<td>.13 (.03 to .25)</td>
<td>.13 (.03 to .25)</td>
</tr>
<tr>
<td>and circulatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>14,793</td>
<td>16,939</td>
<td>19,164</td>
<td>.3 (-.17 to .44)</td>
<td>.13 (.03 to .25)</td>
<td>.13 (.03 to .25)</td>
</tr>
<tr>
<td>Alaska</td>
<td>1,022</td>
<td>1,388</td>
<td>1,738</td>
<td>.7 (.52 to .92)</td>
<td>.25 (12 to .4)</td>
<td>.25 (12 to .4)</td>
</tr>
<tr>
<td>Arizona</td>
<td>9,527</td>
<td>13,618</td>
<td>17,045</td>
<td>.79 (.64 to .96)</td>
<td>.25 (.16 to .35)</td>
<td>.25 (.16 to .35)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>8,502</td>
<td>9,700</td>
<td>10,827</td>
<td>.27 (.17 to .4)</td>
<td>.12 (.03 to .21)</td>
<td>.12 (.03 to .21)</td>
</tr>
<tr>
<td>California</td>
<td>63,905</td>
<td>66,649</td>
<td>77,178</td>
<td>.21 (.09 to .32)</td>
<td>.16 (.06 to .26)</td>
<td>.16 (.06 to .26)</td>
</tr>
<tr>
<td>Colorado</td>
<td>9,206</td>
<td>12,077</td>
<td>15,186</td>
<td>.65 (.51 to .8)</td>
<td>.26 (.17 to .35)</td>
<td>.26 (.17 to .35)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>10,601</td>
<td>9,840</td>
<td>10,414</td>
<td>-.02 (-.12 to .09)</td>
<td>.06 (-.02 to .15)</td>
<td>.06 (-.02 to .15)</td>
</tr>
<tr>
<td>Delaware</td>
<td>2,297</td>
<td>2,781</td>
<td>3,197</td>
<td>.39 (.29 to .52)</td>
<td>.15 (.07 to .25)</td>
<td>.15 (.07 to .25)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>3,227</td>
<td>2,018</td>
<td>1,925</td>
<td>-.4 (-.47 to -.32)</td>
<td>-.04 (-.15 to -.07)</td>
<td>-.04 (-.15 to -.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Florida</td>
<td>41,941</td>
<td>50,038</td>
<td>58,930</td>
<td>.41</td>
<td>.18</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>(37,318 to 48,038)</td>
<td>(44,502 to 57,054)</td>
<td>(51,005 to 67,700)</td>
<td>(.29 to .54)</td>
<td>(.09 to .27)</td>
<td>(209 to 269)</td>
</tr>
<tr>
<td>Georgia</td>
<td>19,349</td>
<td>24,776</td>
<td>30,342</td>
<td>.57</td>
<td>.23</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>(17,299 to 21,746)</td>
<td>(22,137 to 27,703)</td>
<td>(26,447 to 34,596)</td>
<td>(.4 to .75)</td>
<td>(.11 to .35)</td>
<td>(270 to 339)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2,833</td>
<td>3,334</td>
<td>3,973</td>
<td>.4</td>
<td>.19</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>(2,464 to 3,291)</td>
<td>(2,928 to 3,821)</td>
<td>(3,477 to 4,576)</td>
<td>(.29 to .52)</td>
<td>(.11 to .28)</td>
<td>(213 to 283)</td>
</tr>
<tr>
<td>Idaho</td>
<td>3,017</td>
<td>4,031</td>
<td>5,087</td>
<td>.69</td>
<td>.26</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>(2,636 to 3,471)</td>
<td>(3,551 to 4,554)</td>
<td>(4,418 to 5,891)</td>
<td>(.53 to .86)</td>
<td>(.15 to .39)</td>
<td>(244 to 323)</td>
</tr>
<tr>
<td>Illinois</td>
<td>35,569</td>
<td>34,742</td>
<td>35,981</td>
<td>.01</td>
<td>.04</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>(31,778 to 40,305)</td>
<td>(31,027 to 39,082)</td>
<td>(32,032 to 40,679)</td>
<td>(-.07 to .1)</td>
<td>(-.04 to .11)</td>
<td>(248 to 315)</td>
</tr>
<tr>
<td>Indiana</td>
<td>17,661</td>
<td>20,567</td>
<td>23,578</td>
<td>.34</td>
<td>.15</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>(15,513 to 20,065)</td>
<td>(18,168 to 23,417)</td>
<td>(20,419 to 27,274)</td>
<td>(.21 to .47)</td>
<td>(.05 to .25)</td>
<td>(249 to 322)</td>
</tr>
<tr>
<td>Iowa</td>
<td>9,235</td>
<td>8,494</td>
<td>9,256</td>
<td>0</td>
<td>.09</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>(8,117 to 10,628)</td>
<td>(7,547 to 9,542)</td>
<td>(8,185 to 10,610)</td>
<td>(-.08 to .1)</td>
<td>(.01 to .18)</td>
<td>(230 to 302)</td>
</tr>
<tr>
<td>Kansas</td>
<td>7,852</td>
<td>8,025</td>
<td>8,877</td>
<td>.13</td>
<td>.11</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>(6,090 to 8,956)</td>
<td>(7,115 to 9,109)</td>
<td>(7,789 to 10,144)</td>
<td>(.02 to .25)</td>
<td>(0 to .22)</td>
<td>(234 to 308)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>11,540</td>
<td>13,565</td>
<td>15,342</td>
<td>.33</td>
<td>.13</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>(10,313 to 13,116)</td>
<td>(12,050 to 15,466)</td>
<td>(13,514 to 17,385)</td>
<td>(.22 to .45)</td>
<td>(.05 to .22)</td>
<td>(248 to 316)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>13,585</td>
<td>14,086</td>
<td>15,854</td>
<td>.17</td>
<td>.13</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>(12,233 to 15,131)</td>
<td>(12,587 to 15,798)</td>
<td>(14,071 to 17,988)</td>
<td>(.07 to .28)</td>
<td>(.04 to .21)</td>
<td>(281 to 348)</td>
</tr>
<tr>
<td>Maine</td>
<td>3,982</td>
<td>4,140</td>
<td>4,640</td>
<td>.17</td>
<td>.12</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>(3,503 to 4,562)</td>
<td>(3,679 to 4,689)</td>
<td>(4,099 to 5,300)</td>
<td>(.07 to .27)</td>
<td>(.04 to .22)</td>
<td>(242 to 316)</td>
</tr>
<tr>
<td>Maryland</td>
<td>15,763</td>
<td>17,123</td>
<td>19,003</td>
<td>.21</td>
<td>.11</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>(13,960 to 17,642)</td>
<td>(15,072 to 19,424)</td>
<td>(16,740 to 21,608)</td>
<td>(.11 to .31)</td>
<td>(.04 to .19)</td>
<td>(280 to 353)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>18,527</td>
<td>18,957</td>
<td>18,688</td>
<td>.01</td>
<td>.04</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>(16,307 to 21,214)</td>
<td>(15,696 to 20,754)</td>
<td>(16,219 to 21,881)</td>
<td>(.07 to .09)</td>
<td>(.03 to .12)</td>
<td>(228 to 299)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Total (95% CI)</th>
<th>Rate (95% CI)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>25,535 (22,802 to 29,048)</td>
<td>.23 (.13 to .34)</td>
<td>.14 (.07 to .22)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>11,808 (10,443 to 13,511)</td>
<td>.22 (.11 to .34)</td>
<td>.17 (.08 to .26)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>8,798 (7,989 to 9,827)</td>
<td>.25 (.1 to .4)</td>
<td>.11 (.01 to .22)</td>
</tr>
<tr>
<td>Missouri</td>
<td>16,736 (14,826 to 19,016)</td>
<td>.25 (.15 to .36)</td>
<td>.14 (.06 to .22)</td>
</tr>
<tr>
<td>Montana</td>
<td>2,558 (2,240 to 2,912)</td>
<td>.33 (.2 to .47)</td>
<td>.17 (.07 to .28)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>5,411 (4,773 to 6,191)</td>
<td>.1 (.01 to .2)</td>
<td>.13 (.05 to .21)</td>
</tr>
<tr>
<td>Nevada</td>
<td>3,441 (3,065 to 3,870)</td>
<td>1.37 (1.16 to 1.6)</td>
<td>.23 (.14 to .33)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3,278 (2,890 to 3,798)</td>
<td>.23 (.13 to .33)</td>
<td>.15 (.07 to .24)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>28,051 (24,849 to 32,000)</td>
<td>.03 (-.05 to .12)</td>
<td>.04 (-.02 to .12)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>3,597 (3,164 to 4,154)</td>
<td>.55 (.4 to .72)</td>
<td>.17 (.07 to .28)</td>
</tr>
<tr>
<td>New York</td>
<td>53,446 (47,453 to 60,911)</td>
<td>-.02 (-.12 to -.08)</td>
<td>.09 (0 to .19)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>21,530 (19,361 to 24,217)</td>
<td>.45 (.33 to .57)</td>
<td>.2 (.12 to .29)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,824 (1,586 to 2,127)</td>
<td>.02 (-.06 to .13)</td>
<td>.12 (.03 to .22)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Ohio</td>
<td>33,952 (30,256 to 38,328)</td>
<td>35,673 (31,658 to 40,707)</td>
<td>38,544 (34,010 to 43,814)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>9,461 (8,408 to 10,712)</td>
<td>10,593 (9,374 to 11,917)</td>
<td>11,756 (10,350 to 13,287)</td>
</tr>
<tr>
<td>Oregon</td>
<td>9,267 (8,113 to 10,710)</td>
<td>11,346 (10,047 to 12,769)</td>
<td>13,580 (11,906 to 15,384)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>48,903 (43,769 to 55,592)</td>
<td>47,217 (42,123 to 53,621)</td>
<td>48,827 (43,151 to 55,382)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3,079 (2,690 to 3,567)</td>
<td>2,719 (2,367 to 3,117)</td>
<td>2,837 (2,471 to 3,328)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>11,856 (10,596 to 13,345)</td>
<td>14,848 (13,341 to 16,669)</td>
<td>18,417 (16,257 to 20,956)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1,975 (1,728 to 2,298)</td>
<td>2,009 (1,767 to 2,312)</td>
<td>2,366 (2,046 to 2,721)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>14,672 (12,987 to 16,424)</td>
<td>18,550 (16,689 to 20,835)</td>
<td>22,562 (19,993 to 25,411)</td>
</tr>
<tr>
<td>Texas</td>
<td>46,393 (41,345 to 52,864)</td>
<td>60,610 (53,403 to 68,961)</td>
<td>75,523 (66,082 to 85,428)</td>
</tr>
<tr>
<td>Utah</td>
<td>4,037 (3,487 to 4,694)</td>
<td>5,927 (5,103 to 6,857)</td>
<td>7,444 (6,408 to 8,624)</td>
</tr>
<tr>
<td>Vermont</td>
<td>1,851 (1,635 to 2,116)</td>
<td>1,779 (1,578 to 2,011)</td>
<td>2,030 (1,798 to 2,331)</td>
</tr>
<tr>
<td>Virginia</td>
<td>19,206 (17,159 to 21,837)</td>
<td>22,427 (19,810 to 25,487)</td>
<td>25,476 (22,622 to 28,846)</td>
</tr>
<tr>
<td>Washington</td>
<td>14,062 (12,290 to 16,266)</td>
<td>16,943 (15,141 to 19,033)</td>
<td>20,834 (18,447 to 23,455)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2016 estimate (95% UI)</th>
<th>2015 estimate (95% UI)</th>
<th>2014 estimate (95% UI)</th>
<th>2013 estimate (95% UI)</th>
<th>2012 estimate (95% UI)</th>
<th>2011 estimate (95% UI)</th>
<th>2010 estimate (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>6,595 (5,884 to 7,452)</td>
<td>6,640 (5,907 to 7,541)</td>
<td>7,289 (6,469 to 8,275)</td>
<td>7,061 (.11 to .21)</td>
<td>7,085 (.10 to .18)</td>
<td>7,043 (294 to 333)</td>
<td>7,120 (270 to 306)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>14,899 (13,122 to 16,873)</td>
<td>15,468 (13,826 to 17,312)</td>
<td>17,604 (15,690 to 19,694)</td>
<td>17,290 (.18 to .29)</td>
<td>17,207 (.14 to .22)</td>
<td>17,153 (261 to 297)</td>
<td>17,101 (216 to 241)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1,380 (1,215 to 1,582)</td>
<td>1,700 (1,502 to 1,919)</td>
<td>1,986 (1,720 to 2,293)</td>
<td>1,953 (.44 to .59)</td>
<td>1,926 (.17 to .28)</td>
<td>1,925 (305 to 351)</td>
<td>1,924 (271 to 305)</td>
</tr>
</tbody>
</table>

Peripheral artery disease

<table>
<thead>
<tr>
<th>State</th>
<th>2016 estimate (95% UI)</th>
<th>2015 estimate (95% UI)</th>
<th>2014 estimate (95% UI)</th>
<th>2013 estimate (95% UI)</th>
<th>2012 estimate (95% UI)</th>
<th>2011 estimate (95% UI)</th>
<th>2010 estimate (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1,568 (1,074 to 2,054)</td>
<td>2,304 (1,627 to 3,612)</td>
<td>2,840 (2,087 to 4,601)</td>
<td>2,919 (.84 to .23)</td>
<td>2,968 (32 to 42)</td>
<td>3,082 (38 to 59)</td>
<td>3,199 (38 to 62)</td>
</tr>
<tr>
<td>Alaska</td>
<td>72 (56 to 99)</td>
<td>162 (124 to 247)</td>
<td>238 (174 to 375)</td>
<td>234 (.29 to .47)</td>
<td>230 (30 to 42)</td>
<td>27 (31 to 37)</td>
<td>30 (32 to 42)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,168 (851 to 1,583)</td>
<td>2,295 (1,729 to 3,207)</td>
<td>3,226 (2,411 to 4,625)</td>
<td>3,181 (1.78 to .4)</td>
<td>27 (30 to 42)</td>
<td>30 (30 to 42)</td>
<td>.02 (22 to 42)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>971 (683 to 1,305)</td>
<td>1,392 (988 to 2,053)</td>
<td>1,698 (1,223 to 2,806)</td>
<td>1,671 (.76 to .21)</td>
<td>30 (30 to 42)</td>
<td>36 (25 to 36)</td>
<td>37 (27 to 61)</td>
</tr>
<tr>
<td>California</td>
<td>8,060 (5,940 to 11,181)</td>
<td>11,571 (8,784 to 17,178)</td>
<td>14,824 (10,693 to 23,537)</td>
<td>14,884 (.84 to .28)</td>
<td>27 (28 to 42)</td>
<td>27 (28 to 42)</td>
<td>27 (28 to 44)</td>
</tr>
<tr>
<td>Colorado</td>
<td>815 (601 to 1,151)</td>
<td>1,341 (1,030 to 1,957)</td>
<td>1,916 (1,415 to 2,977)</td>
<td>1,961 (.36 to .42)</td>
<td>26 (26 to 36)</td>
<td>26 (19 to 36)</td>
<td>26 (19 to 40)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,266 (910 to 1,731)</td>
<td>1,544 (1,187 to 2,202)</td>
<td>1,766 (1,308 to 2,687)</td>
<td>1,926 (.4 to .42)</td>
<td>30 (30 to 42)</td>
<td>30 (23 to 43)</td>
<td>30 (22 to 44)</td>
</tr>
<tr>
<td>Delaware</td>
<td>272 (188 to 368)</td>
<td>429 (316 to 596)</td>
<td>575 (431 to 831)</td>
<td>1.13 (.14 to .95)</td>
<td>34 (25 to 49)</td>
<td>37 (27 to 51)</td>
<td>37 (27 to 53)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>312 (198 to 428)</td>
<td>301 (205 to 442)</td>
<td>323 (233 to 500)</td>
<td>.05 (-.16 to .39)</td>
<td>.08 (-.08 to .27)</td>
<td>.05 (28 to 61)</td>
<td>.05 (30 to 63)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>6,048 (4,405 to 8,244)</td>
<td>9,551 (7,252 to 13,135)</td>
<td>12,382 (9,168 to 17,831)</td>
<td>1.06 (.7 to 1.85)</td>
<td>.29 (.15 to .45)</td>
<td>.29 (21 to 40)</td>
<td>.33 (25 to 45)</td>
<td>.33 (24 to 46)</td>
<td>.13 (-.07 to .55)</td>
<td>-.01 (-.13 to .11)</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>2,191 (1,419 to 2,881)</td>
<td>3,614 (2,587 to 5,082)</td>
<td>4,930 (3,702 to 7,316)</td>
<td>1.3 (.79 to 2.74)</td>
<td>.36 (.18 to .56)</td>
<td>.35 (23 to 46)</td>
<td>.38 (27 to 53)</td>
<td>.37 (28 to 55)</td>
<td>.08 (-.16 to .77)</td>
<td>-.02 (-.16 to .12)</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>278 (206 to 397)</td>
<td>438 (324 to 681)</td>
<td>594 (427 to 950)</td>
<td>1.14 (.76 to 2.05)</td>
<td>.35 (.21 to .5)</td>
<td>.24 (18 to 34)</td>
<td>.24 (18 to 37)</td>
<td>.25 (18 to 40)</td>
<td>.29 (.15 to .45)</td>
<td>-.01 (-.13 to .1)</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>299 (211 to 401)</td>
<td>484 (365 to 703)</td>
<td>688 (512 to 1,033)</td>
<td>1.33 (.81 to 2.63)</td>
<td>.42 (.22 to .61)</td>
<td>.26 (19 to 35)</td>
<td>.27 (21 to 39)</td>
<td>.28 (21 to 42)</td>
<td>.08 (-.16 to .68)</td>
<td>.03 (-.11 to .18)</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>4,276 (3,025 to 5,777)</td>
<td>5,413 (4,021 to 7,820)</td>
<td>6,375 (4,752 to 9,563)</td>
<td>.5 (22 to 1.17)</td>
<td>.18 (.03 to .31)</td>
<td>.32 (22 to 43)</td>
<td>.34 (25 to 48)</td>
<td>.34 (25 to 51)</td>
<td>.08 (-.12 to .55)</td>
<td>-.01 (-.13 to .1)</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>2,146 (1,511 to 2,897)</td>
<td>2,994 (2,201 to 4,319)</td>
<td>3,701 (2,693 to 5,668)</td>
<td>.74 (.41 to 1.56)</td>
<td>.24 (.08 to .38)</td>
<td>.33 (23 to 44)</td>
<td>.37 (27 to 53)</td>
<td>.38 (27 to 57)</td>
<td>.17 (-.05 to .72)</td>
<td>.02 (-.1 to .14)</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>1,118 (832 to 1,532)</td>
<td>1,339 (992 to 2,006)</td>
<td>1,563 (1,156 to 2,436)</td>
<td>.4 (.14 to 1.04)</td>
<td>.16 (.02 to .31)</td>
<td>.27 (21 to 38)</td>
<td>.29 (22 to 44)</td>
<td>.30 (22 to 47)</td>
<td>.1 (-.1 to .59)</td>
<td>.02 (-.1 to .15)</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>900 (669 to 1,228)</td>
<td>1,138 (867 to 1,701)</td>
<td>1,356 (986 to 2,172)</td>
<td>.51 (.2 to 1.37)</td>
<td>.19 (.03 to .36)</td>
<td>.28 (21 to 38)</td>
<td>.30 (23 to 45)</td>
<td>.31 (23 to 49)</td>
<td>.12 (-.11 to .74)</td>
<td>.01 (-.12 to .17)</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,412 (982 to 1,888)</td>
<td>2,163 (1,519 to 3,167)</td>
<td>2,675 (1,937 to 4,057)</td>
<td>.91 (.55 to 1.99)</td>
<td>.23 (.09 to .39)</td>
<td>.32 (22 to 43)</td>
<td>.40 (28 to 57)</td>
<td>.40 (29 to 61)</td>
<td>.26 (.02 to .96)</td>
<td>.01 (-.11 to .14)</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,541 (1,005 to 2,025)</td>
<td>2,102 (1,464 to 3,060)</td>
<td>2,612 (1,905 to 4,284)</td>
<td>.72 (.32 to 1.88)</td>
<td>.24 (.05 to .45)</td>
<td>.35 (23 to 46)</td>
<td>.40 (28 to 58)</td>
<td>.40 (29 to 65)</td>
<td>.17 (-.1 to .95)</td>
<td>0 (-.15 to .17)</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>493 (332 to 649)</td>
<td>673 (495 to 903)</td>
<td>823 (630 to 1,183)</td>
<td>.69 (.36 to 1.45)</td>
<td>.22 (.07 to .36)</td>
<td>.32 (21 to 42)</td>
<td>.33 (24 to 45)</td>
<td>.33 (25 to 46)</td>
<td>.05 (-.16 to .51)</td>
<td>-.02 (-.15 to .09)</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>1,811 (1,259 to 2,487)</td>
<td>2,509 (1,893 to 3,565)</td>
<td>3,134 (2,340 to 4,750)</td>
<td>.75 (.4 to 1.62)</td>
<td>.24 (.09 to .41)</td>
<td>.37 (26 to 50)</td>
<td>.37 (28 to 52)</td>
<td>.36 (27 to 54)</td>
<td>-.01 (-.21 to .48)</td>
<td>-.03 (-.15 to .1)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,277 (1,501 to 3,021)</td>
<td>2,749 (2,043 to 3,761)</td>
<td>3,227 (2,471 to 4,703)</td>
<td>.43 (.16 to 1.01)</td>
<td>.17 (.02 to .32)</td>
<td>.30 (19 to 40)</td>
<td>.30 (23 to 41)</td>
<td>.30 (23 to 43)</td>
<td>.02 (-.17 to .42)</td>
<td>-.02 (-.14 to .1)</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Population</td>
<td>Confidence Interval</td>
<td>Sex Ratio</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>3,244 (2,417 to 4,457)</td>
<td>4,683 (3,492 to 7,227)</td>
<td>.73 (.41 to 1.55)</td>
<td>.19 (.06 to .31)</td>
<td>.31 (23 to 43)</td>
<td>.36 (27 to 55)</td>
<td>.35 (26 to 56)</td>
<td>.14 (-.07 to .67)</td>
<td>.01 (-.12 to .09)</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,504 (1,041 to 1,974)</td>
<td>1,864 (1,376 to 2,615)</td>
<td>.57 (.26 to 1.28)</td>
<td>.25 (.08 to .42)</td>
<td>.28 (20 to 37)</td>
<td>.27 (20 to 38)</td>
<td>.27 (20 to 41)</td>
<td>-.02 (-.21 to .44)</td>
<td>0 (-.14 to .13)</td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>901 (673 to 1,234)</td>
<td>1,244 (874 to 2,469)</td>
<td>.73 (.3 to 2.02)</td>
<td>.26 (.1 to .44)</td>
<td>.30 (22 to 41)</td>
<td>.35 (24 to 68)</td>
<td>.36 (25 to 73)</td>
<td>.2 (-.09 to 1.1)</td>
<td>.04 (-.08 to .2)</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>2,087 (1,474 to 2,800)</td>
<td>2,847 (2,089 to 4,157)</td>
<td>.67 (.36 to 1.58)</td>
<td>.22 (.08 to .35)</td>
<td>.31 (22 to 41)</td>
<td>.36 (26 to 52)</td>
<td>.36 (27 to 55)</td>
<td>.18 (-.04 to .82)</td>
<td>.01 (-.1 to .14)</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>290 (197 to 379)</td>
<td>421 (319 to 567)</td>
<td>.9 (.51 to 1.81)</td>
<td>.29 (.12 to .48)</td>
<td>.29 (20 to 38)</td>
<td>.30 (23 to 41)</td>
<td>.31 (23 to 43)</td>
<td>.07 (-.15 to .59)</td>
<td>.01 (-.13 to .16)</td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>584 (430 to 798)</td>
<td>718 (540 to 1,081)</td>
<td>.49 (.21 to 1.24)</td>
<td>.2 (.06 to .34)</td>
<td>.27 (20 to 37)</td>
<td>.29 (22 to 44)</td>
<td>.30 (22 to 47)</td>
<td>.1 (-.11 to .65)</td>
<td>.03 (-.09 to .14)</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>390 (289 to 530)</td>
<td>1,008 (755 to 1,387)</td>
<td>1,426 (1,069 to 2,106)</td>
<td>.26 (2.03 to 3.97)</td>
<td>.41 (.23 to .6)</td>
<td>.33 (24 to 44)</td>
<td>.36 (27 to 49)</td>
<td>.34 (26 to 51)</td>
<td>.06 (-.13 to .45)</td>
<td>-.04 (-.16 to .09)</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>376 (266 to 507)</td>
<td>557 (427 to 789)</td>
<td>.94 (.56 to 1.83)</td>
<td>.29 (.13 to .44)</td>
<td>.31 (22 to 42)</td>
<td>.32 (25 to 45)</td>
<td>.32 (24 to 47)</td>
<td>.02 (-.18 to .49)</td>
<td>-.02 (-.14 to .09)</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,211 (2,282 to 4,419)</td>
<td>3,922 (2,980 to 5,517)</td>
<td>4,553 (3,388 to 6,743)</td>
<td>.43 (.17 to 1.04)</td>
<td>.16 (.02 to .3)</td>
<td>.33 (24 to 46)</td>
<td>.33 (24 to 48)</td>
<td>.01 (-.19 to .39)</td>
<td>-.02 (-.14 to .1)</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>420 (295 to 564)</td>
<td>730 (558 to 1,034)</td>
<td>975 (735 to 1,442)</td>
<td>.35 (.86 to 2.61)</td>
<td>.33 (.16 to .52)</td>
<td>.27 (19 to 36)</td>
<td>.29 (23 to 42)</td>
<td>.30 (23 to 44)</td>
<td>.12 (-.12 to .72)</td>
<td>.02 (-.11 to .17)</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>6,382 (4,768 to 9,191)</td>
<td>7,210 (5,143 to 11,425)</td>
<td>8,382 (5,743 to 14,081)</td>
<td>.31 (.06 to .91)</td>
<td>.16 (.03 to .31)</td>
<td>.29 (21 to 41)</td>
<td>.28 (20 to 44)</td>
<td>.28 (19 to 46)</td>
<td>-.04 (-.22 to .41)</td>
<td>-.02 (-.13 to .11)</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>2,424 (1,617 to 3,215)</td>
<td>3,923 (2,750 to 5,506)</td>
<td>5,198 (3,834 to 7,606)</td>
<td>1.17 (.74 to 2.35)</td>
<td>.33 (.16 to .49)</td>
<td>.32 (21 to 43)</td>
<td>.35 (25 to 49)</td>
<td>.34 (25 to 50)</td>
<td>.09 (-.13 to .68)</td>
<td>-.02 (-.15 to .1)</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>232 (168 to 311)</td>
<td>274 (202 to 410)</td>
<td>325 (236 to 513)</td>
<td>.41 (.11 to 1.17)</td>
<td>.18 (.02 to .34)</td>
<td>.27 (19 to 36)</td>
<td>.28 (20 to 42)</td>
<td>.29 (21 to 45)</td>
<td>.08 (-.14 to .64)</td>
<td>.03 (-.11 to .17)</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Deaths</td>
<td>95% UI</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>4,374</td>
<td>(3,029 to 5,823)</td>
<td>6,150</td>
<td>(4,290 to 8,621)</td>
<td>7,045</td>
<td>(5,136 to 10,302)</td>
<td>.63</td>
<td>(.33 to 1.45)</td>
<td>.14</td>
<td>(0 to .28)</td>
<td>33</td>
<td>(23 to 44)</td>
<td>39</td>
<td>(27 to 54)</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,123</td>
<td>(835 to 1,582)</td>
<td>1,667</td>
<td>(1,216 to 2,758)</td>
<td>2,027</td>
<td>(1,414 to 3,626)</td>
<td>.8</td>
<td>(.43 to 2.14)</td>
<td>.2</td>
<td>(.05 to .4)</td>
<td>28</td>
<td>(21 to 40)</td>
<td>35</td>
<td>(26 to 58)</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>1,078</td>
<td>(747 to 1,412)</td>
<td>1,551</td>
<td>(1,169 to 2,191)</td>
<td>2,003</td>
<td>(1,500 to 2,904)</td>
<td>.87</td>
<td>(.53 to 1.7)</td>
<td>.29</td>
<td>(.15 to .43)</td>
<td>30</td>
<td>(21 to 39)</td>
<td>31</td>
<td>(23 to 42)</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5,670</td>
<td>(3,958 to 7,486)</td>
<td>6,884</td>
<td>(5,066 to 9,841)</td>
<td>7,988</td>
<td>(5,946 to 11,557)</td>
<td>.42</td>
<td>(.18 to 1.02)</td>
<td>.16</td>
<td>(.04 to .27)</td>
<td>34</td>
<td>(24 to 45)</td>
<td>35</td>
<td>(26 to 51)</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>426</td>
<td>(303 to 587)</td>
<td>507</td>
<td>(387 to 719)</td>
<td>578</td>
<td>(422 to 892)</td>
<td>.37</td>
<td>(.09 to 1.01)</td>
<td>.14</td>
<td>(-.02 to .3)</td>
<td>31</td>
<td>(22 to 42)</td>
<td>33</td>
<td>(25 to 45)</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,347</td>
<td>(837 to 1,773)</td>
<td>2,239</td>
<td>(1,490 to 3,010)</td>
<td>3,091</td>
<td>(2,143 to 4,423)</td>
<td>1.34</td>
<td>(.86 to 2.77)</td>
<td>.38</td>
<td>(.19 to .58)</td>
<td>37</td>
<td>(23 to 48)</td>
<td>40</td>
<td>(27 to 54)</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>267</td>
<td>(184 to 350)</td>
<td>340</td>
<td>(246 to 481)</td>
<td>427</td>
<td>(314 to 642)</td>
<td>.62</td>
<td>(.28 to 1.49)</td>
<td>.25</td>
<td>(.1 to .42)</td>
<td>28</td>
<td>(19 to 36)</td>
<td>30</td>
<td>(21 to 42)</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>1,893</td>
<td>(1,236 to 2,493)</td>
<td>3,014</td>
<td>(2,100 to 4,302)</td>
<td>3,967</td>
<td>(2,822 to 5,913)</td>
<td>1.13</td>
<td>(.7 to 2.41)</td>
<td>.32</td>
<td>(.15 to .47)</td>
<td>32</td>
<td>(21 to 42)</td>
<td>38</td>
<td>(27 to 55)</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>4,981</td>
<td>(3,472 to 6,650)</td>
<td>8,660</td>
<td>(6,009 to 11,914)</td>
<td>11,910</td>
<td>(8,672 to 17,452)</td>
<td>1.41</td>
<td>(.97 to 2.71)</td>
<td>.37</td>
<td>(.2 to .56)</td>
<td>30</td>
<td>(21 to 40)</td>
<td>36</td>
<td>(25 to 49)</td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>351</td>
<td>(253 to 480)</td>
<td>587</td>
<td>(446 to 859)</td>
<td>819</td>
<td>(604 to 1,257)</td>
<td>1.35</td>
<td>(.89 to 2.42)</td>
<td>.39</td>
<td>(.22 to .58)</td>
<td>25</td>
<td>(18 to 34)</td>
<td>26</td>
<td>(19 to 37)</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>205</td>
<td>(134 to 271)</td>
<td>275</td>
<td>(209 to 374)</td>
<td>342</td>
<td>(265 to 488)</td>
<td>.69</td>
<td>(.35 to 1.42)</td>
<td>.25</td>
<td>(.08 to .4)</td>
<td>32</td>
<td>(21 to 42)</td>
<td>31</td>
<td>(24 to 42)</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>1,959</td>
<td>(1,395 to 2,693)</td>
<td>3,011</td>
<td>(2,265 to 4,386)</td>
<td>3,845</td>
<td>(2,926 to 5,928)</td>
<td>.98</td>
<td>(.59 to 1.91)</td>
<td>.27</td>
<td>(.12 to .44)</td>
<td>31</td>
<td>(22 to 42)</td>
<td>33</td>
<td>(25 to 48)</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>1,512</td>
<td>(1,105 to 2,068)</td>
<td>2,332</td>
<td>(1,794 to 3,436)</td>
<td>3,064</td>
<td>(2,310 to 4,725)</td>
<td>1.04</td>
<td>(.64 to 2.04)</td>
<td>.31</td>
<td>(.16 to .47)</td>
<td>28</td>
<td>(20 to 38)</td>
<td>30</td>
<td>(23 to 43)</td>
<td>29</td>
<td>(22 to 45)</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Rheumatic heart disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td></td>
</tr>
</tbody>
</table>

Rheumatic heart disease

<table>
<thead>
<tr>
<th>State</th>
<th>Count (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>4,060 (3,761 to 4,347)</td>
</tr>
<tr>
<td>Alaska</td>
<td>348 (320 to 377)</td>
</tr>
<tr>
<td>Arizona</td>
<td>2,463 (2,309 to 2,640)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>2,100 (1,975 to 2,234)</td>
</tr>
<tr>
<td>California</td>
<td>20,549 (18,975 to 22,322)</td>
</tr>
<tr>
<td>Colorado</td>
<td>2,691 (2,525 to 2,879)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>2,636 (2,454 to 2,841)</td>
</tr>
<tr>
<td>Delaware</td>
<td>538 (494 to 580)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>642 (550 to 786)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
<th>Year 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>10,075 (9,322 to 10,926)</td>
<td>7,968 (7,423 to 8,554)</td>
<td>9,112 (8,233 to 10,044)</td>
<td>-0.09 (-2 to 0.02)</td>
<td>0.14 (0.01 to 0.28)</td>
<td>57 (53 to 62)</td>
<td>31 (29 to 34)</td>
<td>29 (26 to 32)</td>
<td>-5 (-5.6 to -4.3)</td>
<td>-0.09 (-2 to 0.02)</td>
</tr>
<tr>
<td>Georgia</td>
<td>4,665 (4,303 to 5,095)</td>
<td>5,152 (4,776 to 5,623)</td>
<td>6,325 (5,627 to 7,103)</td>
<td>0.36 (0.17 to 0.55)</td>
<td>0.23 (0.08 to 0.4)</td>
<td>73 (67 to 79)</td>
<td>53 (49 to 58)</td>
<td>50 (45 to 56)</td>
<td>-3.1 (-4 to -2.1)</td>
<td>-0.05 (-1.6 to -0.8)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>751 (698 to 812)</td>
<td>702 (660 to 751)</td>
<td>818 (746 to 890)</td>
<td>0.09 (-0.03 to 0.22)</td>
<td>0.17 (0.06 to 0.28)</td>
<td>65 (60 to 70)</td>
<td>41 (39 to 44)</td>
<td>40 (36 to 43)</td>
<td>-3.9 (-0.45 to -0.31)</td>
<td>-0.04 (-0.13 to -0.06)</td>
</tr>
<tr>
<td>Idaho</td>
<td>895 (831 to 964)</td>
<td>911 (846 to 975)</td>
<td>1,148 (1,019 to 1,293)</td>
<td>0.28 (0.11 to 0.47)</td>
<td>0.26 (0.1 to 0.43)</td>
<td>83 (77 to 89)</td>
<td>53 (50 to 57)</td>
<td>52 (46 to 59)</td>
<td>-3.7 (-0.45 to -0.27)</td>
<td>-0.02 (-0.15 to -0.11)</td>
</tr>
<tr>
<td>Illinois</td>
<td>9,254 (8,640 to 9,928)</td>
<td>6,404 (6,015 to 6,797)</td>
<td>6,714 (6,122 to 7,299)</td>
<td>-0.27 (-0.36 to -0.19)</td>
<td>0.05 (-0.05 to 0.17)</td>
<td>73 (68 to 78)</td>
<td>42 (40 to 45)</td>
<td>39 (35 to 42)</td>
<td>-0.47 (-0.53 to -0.41)</td>
<td>-0.08 (-0.17 to -0.02)</td>
</tr>
<tr>
<td>Indiana</td>
<td>4,522 (4,214 to 4,805)</td>
<td>3,851 (3,603 to 4,112)</td>
<td>4,436 (3,954 to 4,960)</td>
<td>-0.02 (-0.15 to -0.12)</td>
<td>0.15 (0.01 to 0.29)</td>
<td>73 (68 to 77)</td>
<td>50 (47 to 54)</td>
<td>50 (45 to 57)</td>
<td>-0.31 (-0.4 to -0.2)</td>
<td>0 (-0.12 to 0.13)</td>
</tr>
<tr>
<td>Iowa</td>
<td>1,952 (1,822 to 2,078)</td>
<td>1,432 (1,341 to 1,525)</td>
<td>1,536 (1,375 to 1,709)</td>
<td>-0.21 (-0.3 to -0.11)</td>
<td>0.07 (-0.03 to 0.19)</td>
<td>55 (51 to 59)</td>
<td>35 (33 to 37)</td>
<td>34 (30 to 38)</td>
<td>-0.39 (-0.46 to -0.31)</td>
<td>-0.03 (-0.14 to -0.08)</td>
</tr>
<tr>
<td>Kansas</td>
<td>1,887 (1,764 to 2,016)</td>
<td>1,653 (1,548 to 1,754)</td>
<td>1,783 (1,567 to 2,017)</td>
<td>-0.05 (-0.18 to 0.08)</td>
<td>0.08 (-0.05 to 0.22)</td>
<td>65 (60 to 69)</td>
<td>48 (44 to 51)</td>
<td>45 (40 to 52)</td>
<td>-3 (-0.39 to -0.2)</td>
<td>-0.04 (-0.16 to -0.09)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>3,235 (3,038 to 3,432)</td>
<td>2,948 (2,767 to 3,123)</td>
<td>3,339 (3,034 to 3,643)</td>
<td>0.03 (-0.08 to 0.16)</td>
<td>0.13 (0.03 to 0.25)</td>
<td>78 (73 to 83)</td>
<td>57 (54 to 61)</td>
<td>56 (51 to 61)</td>
<td>-0.28 (-0.36 to -0.2)</td>
<td>-0.02 (-0.11 to -0.08)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>3,125 (2,892 to 3,409)</td>
<td>2,738 (2,529 to 3,066)</td>
<td>3,076 (2,813 to 3,370)</td>
<td>-0.01 (-0.12 to -0.1)</td>
<td>0.12 (0.02 to 0.25)</td>
<td>72 (67 to 79)</td>
<td>54 (50 to 60)</td>
<td>51 (47 to 57)</td>
<td>-0.29 (-0.36 to -0.21)</td>
<td>-0.06 (-0.14 to -0.05)</td>
</tr>
<tr>
<td>Maine</td>
<td>942 (882 to 1,006)</td>
<td>770 (715 to 823)</td>
<td>846 (760 to 932)</td>
<td>-1 (-2 to 0)</td>
<td>1 (-0.02 to 0.22)</td>
<td>65 (61 to 69)</td>
<td>42 (39 to 44)</td>
<td>39 (35 to 43)</td>
<td>-0.4 (-0.47 to -0.33)</td>
<td>-0.06 (-0.16 to -0.04)</td>
</tr>
<tr>
<td>Maryland</td>
<td>3,518 (3,241 to 3,872)</td>
<td>2,562 (2,370 to 2,801)</td>
<td>2,664 (2,419 to 2,939)</td>
<td>-0.24 (-0.32 to -0.14)</td>
<td>0.04 (-0.06 to 0.16)</td>
<td>70 (65 to 77)</td>
<td>39 (36 to 42)</td>
<td>34 (30 to 37)</td>
<td>-0.52 (-0.57 to -0.46)</td>
<td>-0.13 (-0.22 to -0.04)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>4,740 (4,418 to 5,081)</td>
<td>3,215 (3,011 to 3,427)</td>
<td>3,349 (3,000 to 3,694)</td>
<td>-0.29 (-0.37 to -0.21)</td>
<td>0.04 (-0.06 to 0.15)</td>
<td>66 (62 to 71)</td>
<td>38 (35 to 40)</td>
<td>34 (30 to 38)</td>
<td>-0.48 (-0.55 to -0.42)</td>
<td>-0.09 (-0.18 to 0.01)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Cases 2016</th>
<th>CI 95% Lower</th>
<th>CI 95% Upper</th>
<th>Cases 2017</th>
<th>CI 95% Lower</th>
<th>CI 95% Upper</th>
<th>% Change</th>
<th>CI 95% Lower</th>
<th>CI 95% Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>5,700</td>
<td>(5,251 to 6,208)</td>
<td>-.21 (-.28 to -.11)</td>
<td>71</td>
<td>(66 to 77)</td>
<td>42</td>
<td>(40 to 45)</td>
<td>.09 (-.02 to .2)</td>
<td>38</td>
<td>(35 to 41)</td>
<td>36</td>
<td>(32 to 40)</td>
<td>-.43 (-.49 to -.36)</td>
<td>-.04 (-.12 to .07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>2,806</td>
<td>(2,500 to 3,110)</td>
<td>-.04 (-.15 to .08)</td>
<td>59</td>
<td>(55 to 63)</td>
<td>38</td>
<td>(35 to 41)</td>
<td>.14 (0.02 to .26)</td>
<td>59</td>
<td>(55 to 63)</td>
<td>36</td>
<td>(32 to 40)</td>
<td>-.38 (-.46 to -.3)</td>
<td>-.05 (-.15 to .05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>2,629</td>
<td>(2,327 to 2,973)</td>
<td>.1 (-.04 to .26)</td>
<td>86</td>
<td>(80 to 94)</td>
<td>70</td>
<td>(65 to 76)</td>
<td>.0 (-.03 to .25)</td>
<td>86</td>
<td>(80 to 94)</td>
<td>70</td>
<td>(60 to 77)</td>
<td>-.21 (-.31 to -.1)</td>
<td>-.03 (-.16 to .09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>3,770</td>
<td>(3,455 to 4,107)</td>
<td>-.07 (-.16 to .04)</td>
<td>67</td>
<td>(63 to 71)</td>
<td>46</td>
<td>(43 to 49)</td>
<td>.12 (0.01 to .24)</td>
<td>67</td>
<td>(63 to 71)</td>
<td>45</td>
<td>(41 to 48)</td>
<td>-.33 (-.4 to .26)</td>
<td>-.03 (-.12 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>831</td>
<td>(728 to 947)</td>
<td>.01 (-.12 to .16)</td>
<td>89</td>
<td>(82 to 95)</td>
<td>58</td>
<td>(54 to 63)</td>
<td>.12 (-.02 to .28)</td>
<td>89</td>
<td>(82 to 95)</td>
<td>54</td>
<td>(47 to 62)</td>
<td>-.39 (-.47 to -.29)</td>
<td>-.07 (-.19 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,227</td>
<td>(1,112 to 1,350)</td>
<td>-.14 (-.23 to -.04)</td>
<td>76</td>
<td>(71 to 81)</td>
<td>50</td>
<td>(46 to 53)</td>
<td>.09 (-.01 to .21)</td>
<td>76</td>
<td>(71 to 81)</td>
<td>48</td>
<td>(43 to 52)</td>
<td>-.37 (-.44 to -.3)</td>
<td>-.04 (-.14 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>1,800</td>
<td>(1,607 to 2,015)</td>
<td>.6 (.41 to .81)</td>
<td>90</td>
<td>(82 to 99)</td>
<td>55</td>
<td>(51 to 60)</td>
<td>.16 (.03 to .31)</td>
<td>90</td>
<td>(82 to 99)</td>
<td>47</td>
<td>(42 to 52)</td>
<td>-.48 (-.54 to -.41)</td>
<td>-.14 (-.24 to -.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>733</td>
<td>(659 to 812)</td>
<td>-.03 (-.14 to .09)</td>
<td>64</td>
<td>(60 to 69)</td>
<td>38</td>
<td>(35 to 40)</td>
<td>.18 (.06 to .31)</td>
<td>64</td>
<td>(60 to 69)</td>
<td>36</td>
<td>(32 to 41)</td>
<td>-.43 (-.5 to -.36)</td>
<td>-.03 (-.13 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>4,420</td>
<td>(3,983 to 4,887)</td>
<td>-.39 (-.46 to -.31)</td>
<td>79</td>
<td>(73 to 85)</td>
<td>40</td>
<td>(37 to 42)</td>
<td>.01 (-.09 to .13)</td>
<td>79</td>
<td>(73 to 85)</td>
<td>35</td>
<td>(32 to 39)</td>
<td>-.55 (-.61 to -.49)</td>
<td>-.11 (-.2 to -.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,409</td>
<td>(1,249 to 1,592)</td>
<td>.08 (-.07 to .24)</td>
<td>86</td>
<td>(79 to 93)</td>
<td>53</td>
<td>(49 to 56)</td>
<td>.14 (0 to .31)</td>
<td>86</td>
<td>(79 to 93)</td>
<td>51</td>
<td>(45 to 57)</td>
<td>-.41 (-.49 to -.32)</td>
<td>-.04 (-.16 to .01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>7,908</td>
<td>(7,038 to 8,856)</td>
<td>-.46 (-.53 to -.37)</td>
<td>70</td>
<td>(65 to 75)</td>
<td>32</td>
<td>(30 to 34)</td>
<td>.02 (-.1 to .14)</td>
<td>70</td>
<td>(65 to 75)</td>
<td>29</td>
<td>(26 to 33)</td>
<td>-.58 (-.64 to -.52)</td>
<td>-.1 (-.2 to .02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>5,352</td>
<td>(4,918 to 5,815)</td>
<td>.11 (-.01 to .24)</td>
<td>66</td>
<td>(61 to 71)</td>
<td>42</td>
<td>(40 to 45)</td>
<td>.18 (.08 to .3)</td>
<td>66</td>
<td>(61 to 71)</td>
<td>39</td>
<td>(36 to 43)</td>
<td>-.41 (-.47 to -.34)</td>
<td>-.07 (-.16 to .02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>380</td>
<td>(336 to 428)</td>
<td>-.16 (-.26 to -.05)</td>
<td>59</td>
<td>(55 to 64)</td>
<td>39</td>
<td>(36 to 42)</td>
<td>.11 (-.02 to .24)</td>
<td>59</td>
<td>(55 to 64)</td>
<td>38</td>
<td>(33 to 43)</td>
<td>-.35 (-.43 to -.26)</td>
<td>-.02 (-.14 to .1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Rate (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>9,130 (8,498 to 9,729)</td>
<td>6,289 (5,926 to 6,705)</td>
<td>6,725 (6,185 to 7,300)</td>
<td>-.26 (-.34 to -.18)</td>
<td>.07 (-.03 to .18)</td>
<td>73 (68 to 78)</td>
<td>43 (40 to 46)</td>
<td>41 (38 to 45)</td>
<td>-44 (-.49 to -.37)</td>
<td>-3 (-1.12 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>2,403 (2,262 to 2,558)</td>
<td>2,367 (2,226 to 2,518)</td>
<td>2,631 (2,415 to 2,857)</td>
<td>.1 (-.01 to .21)</td>
<td>.11 (.02 to .22)</td>
<td>66 (62 to 70)</td>
<td>54 (50 to 57)</td>
<td>52 (48 to 56)</td>
<td>-21 (-.28 to -.12)</td>
<td>-3 (-.11 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>2,403 (2,250 to 2,569)</td>
<td>2,148 (2,015 to 2,289)</td>
<td>2,421 (2,184 to 2,652)</td>
<td>.01 (-1.1 to .13)</td>
<td>.13 (.02 to .24)</td>
<td>71 (66 to 76)</td>
<td>45 (42 to 48)</td>
<td>41 (37 to 45)</td>
<td>-43 (-.49 to -.35)</td>
<td>-9 (-.18 to .01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>12,911 (12,093 to 13,750)</td>
<td>7,930 (7,488 to 8,377)</td>
<td>8,036 (7,405 to 8,736)</td>
<td>-.38 (-.44 to -.31)</td>
<td>.01 (-.07 to .1)</td>
<td>85 (80 to 91)</td>
<td>45 (43 to 48)</td>
<td>41 (38 to 45)</td>
<td>-51 (-.56 to -.46)</td>
<td>-8 (-.16 to 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>693 (641 to 746)</td>
<td>487 (449 to 525)</td>
<td>486 (424 to 556)</td>
<td>-3 (-.39 to -.19)</td>
<td>-.12 to .14</td>
<td>56 (52 to 60)</td>
<td>34 (31 to 37)</td>
<td>31 (27 to 36)</td>
<td>-44 (-.52 to -.35)</td>
<td>-8 (-.2 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>2,739 (2,524 to 2,970)</td>
<td>2,788 (2,605 to 2,988)</td>
<td>3,359 (3,031 to 3,755)</td>
<td>.23 (.06 to .42)</td>
<td>.21 (.06 to .37)</td>
<td>75 (69 to 81)</td>
<td>53 (49 to 56)</td>
<td>49 (44 to 55)</td>
<td>-.34 (-.43 to -.24)</td>
<td>-.06 (-.17 to .07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>524 (487 to 561)</td>
<td>419 (389 to 449)</td>
<td>484 (426 to 545)</td>
<td>-.08 (-.2 to .06)</td>
<td>.16 (.02 to .3)</td>
<td>62 (58 to 67)</td>
<td>41 (38 to 44)</td>
<td>41 (36 to 47)</td>
<td>-.34 (-.43 to -.24)</td>
<td>0 (-.12 to .14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>3,420 (3,190 to 3,655)</td>
<td>3,048 (2,844 to 3,241)</td>
<td>3,615 (3,286 to 3,988)</td>
<td>.06 (-.06 to .17)</td>
<td>.19 (.07 to .3)</td>
<td>62 (58 to 66)</td>
<td>41 (38 to 44)</td>
<td>40 (37 to 44)</td>
<td>-.34 (-.42 to -.27)</td>
<td>-.01 (-.11 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>10,445 (9,741 to 11,205)</td>
<td>10,119 (9,521 to 10,772)</td>
<td>12,481 (11,455 to 13,649)</td>
<td>.2 (.07 to .34)</td>
<td>.23 (.11 to .36)</td>
<td>63 (59 to 68)</td>
<td>41 (39 to 44)</td>
<td>39 (36 to 42)</td>
<td>-.38 (-.45 to -.31)</td>
<td>-.06 (-.15 to .04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>1,720 (1,603 to 1,846)</td>
<td>1,699 (1,597 to 1,815)</td>
<td>2,109 (1,927 to 2,314)</td>
<td>.23 (.11 to .36)</td>
<td>.24 (.12 to .37)</td>
<td>118 (110 to 126)</td>
<td>72 (68 to 77)</td>
<td>68 (62 to 74)</td>
<td>-.42 (-.49 to -.36)</td>
<td>-.06 (-.15 to .04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>418 (387 to 447)</td>
<td>324 (302 to 346)</td>
<td>359 (324 to 394)</td>
<td>-.14 (-.24 to -.04)</td>
<td>-.01 to .23</td>
<td>68 (63 to 73)</td>
<td>39 (36 to 42)</td>
<td>37 (33 to 41)</td>
<td>-.46 (-.52 to -.39)</td>
<td>-.06 (-.16 to .05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>4,117 (3,873 to 4,411)</td>
<td>3,734 (3,525 to 3,944)</td>
<td>4,161 (3,776 to 4,570)</td>
<td>.01 (-.1 to .14)</td>
<td>.12 (.01 to .23)</td>
<td>65 (61 to 69)</td>
<td>41 (39 to 44)</td>
<td>37 (34 to 41)</td>
<td>-.42 (-.49 to -.35)</td>
<td>-1 (-.19 to 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>3,504 (3,269 to 3,748)</td>
<td>2,812 (2,652 to 2,987)</td>
<td>3,252 (2,966 to 3,565)</td>
<td>-.07 (-.17 to .05)</td>
<td>.16 (.04 to .28)</td>
<td>67 (62 to 71)</td>
<td>37 (35 to 39)</td>
<td>33 (30 to 37)</td>
<td>-.5 (-.55 to -.43)</td>
<td>-.09 (-.18 to .01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>1,763 (1,648 to 1,886)</td>
<td>1,402 (1,311 to 1,498)</td>
<td>1,521 (1,376 to 1,670)</td>
<td>-.14 (-.24 to -.03)</td>
<td>.09 (-.02 to .2)</td>
<td>78 (73 to 84)</td>
<td>56 (52 to 60)</td>
<td>57 (51 to 62)</td>
<td>-.28 (-.36 to -.19)</td>
<td>.01 (-.08 to .12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>3,502 (3,285 to 3,722)</td>
<td>2,915 (2,747 to 3,085)</td>
<td>3,208 (2,935 to 3,487)</td>
<td>-.08 (-.17 to .02)</td>
<td>.1 (.01 to .21)</td>
<td>61 (58 to 65)</td>
<td>40 (38 to 43)</td>
<td>38 (35 to 42)</td>
<td>-.37 (-.43 to -.3)</td>
<td>-.04 (-.13 to .05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>418 (387 to 449)</td>
<td>421 (393 to 451)</td>
<td>463 (406 to 527)</td>
<td>.11 (-.04 to .28)</td>
<td>.1 (-.04 to .26)</td>
<td>93 (86 to 100)</td>
<td>66 (62 to 71)</td>
<td>60 (53 to 69)</td>
<td>-.35 (-.44 to -.25)</td>
<td>-.09 (-.21 to .04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eTable 2. Age-standardized heart failure prevalence per 100 000 persons for 2016

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>1001</td>
<td>(947 to 1060)</td>
<td>1226</td>
<td>(1163 to 1288)</td>
</tr>
<tr>
<td>Alaska</td>
<td>688</td>
<td>(608 to 783)</td>
<td>894</td>
<td>(792 to 1006)</td>
</tr>
<tr>
<td>Arizona</td>
<td>802</td>
<td>(757 to 854)</td>
<td>994</td>
<td>(947 to 1045)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>951</td>
<td>(873 to 1031)</td>
<td>1152</td>
<td>(1090 to 1215)</td>
</tr>
<tr>
<td>California</td>
<td>826</td>
<td>(795 to 852)</td>
<td>1063</td>
<td>(1027 to 1097)</td>
</tr>
<tr>
<td>Colorado</td>
<td>896</td>
<td>(843 to 950)</td>
<td>1052</td>
<td>(997 to 1106)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>896</td>
<td>(854 to 940)</td>
<td>1180</td>
<td>(1136 to 1224)</td>
</tr>
<tr>
<td>Delaware</td>
<td>854</td>
<td>(803 to 912)</td>
<td>1074</td>
<td>(1014 to 1140)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>868</td>
<td>(768 to 984)</td>
<td>1001</td>
<td>(881 to 1124)</td>
</tr>
<tr>
<td>Florida</td>
<td>921</td>
<td>(892 to 972)</td>
<td>1156</td>
<td>(1128 to 1190)</td>
</tr>
<tr>
<td>Georgia</td>
<td>914</td>
<td>(882 to 944)</td>
<td>1107</td>
<td>(1063 to 1160)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>769</td>
<td>(697 to 853)</td>
<td>1164</td>
<td>(1071 to 1262)</td>
</tr>
<tr>
<td>Idaho</td>
<td>848</td>
<td>(792 to 907)</td>
<td>1013</td>
<td>(949 to 1082)</td>
</tr>
<tr>
<td>Illinois</td>
<td>887</td>
<td>(845 to 928)</td>
<td>1101</td>
<td>(1052 to 1156)</td>
</tr>
<tr>
<td>Indiana</td>
<td>1183</td>
<td>(1129 to 1230)</td>
<td>1458</td>
<td>(1402 to 1504)</td>
</tr>
<tr>
<td>Iowa</td>
<td>695</td>
<td>(642 to 778)</td>
<td>907</td>
<td>(837 to 1003)</td>
</tr>
<tr>
<td>Kansas</td>
<td>849</td>
<td>(795 to 910)</td>
<td>980</td>
<td>(905 to 1061)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1183</td>
<td>(1121 to 1237)</td>
<td>1384</td>
<td>(1318 to 1451)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>998</td>
<td>(930 to 1066)</td>
<td>1203</td>
<td>(1134 to 1268)</td>
</tr>
<tr>
<td>Maine</td>
<td>758</td>
<td>(702 to 828)</td>
<td>1043</td>
<td>(981 to 1109)</td>
</tr>
<tr>
<td>Maryland</td>
<td>1005</td>
<td>(954 to 1055)</td>
<td>1242</td>
<td>(1179 to 1309)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>805</td>
<td>(747 to 867)</td>
<td>1037</td>
<td>(976 to 1125)</td>
</tr>
<tr>
<td>Michigan</td>
<td>1182</td>
<td>(1130 to 1221)</td>
<td>1398</td>
<td>(1359 to 1427)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>672</td>
<td>(615 to 741)</td>
<td>854</td>
<td>(785 to 922)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>963</td>
<td>(898 to 1033)</td>
<td>1188</td>
<td>(1111 to 1269)</td>
</tr>
<tr>
<td>Missouri</td>
<td>1021</td>
<td>(979 to 1059)</td>
<td>1290</td>
<td>(1233 to 1338)</td>
</tr>
<tr>
<td>Montana</td>
<td>881</td>
<td>(826 to 942)</td>
<td>1099</td>
<td>(1026 to 1173)</td>
</tr>
<tr>
<td>State</td>
<td>Annual Mean (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>844 (772 to 923)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1083 (1001 to 1180)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>946 (890 to 1003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1107 (1043 to 1178)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>729 (676 to 807)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1009 (923 to 1111)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>987 (947 to 1028)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1310 (1259 to 1357)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>914 (870 to 961)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1102 (1035 to 1195)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>1151 (1106 to 1190)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1515 (1469 to 1545)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>802 (760 to 849)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>969 (920 to 1031)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>817 (725 to 925)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>922 (816 to 1051)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>1097 (1046 to 1140)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1367 (1319 to 1406)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1159 (1102 to 1209)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1428 (1365 to 1477)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>773 (720 to 831)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>949 (882 to 1027)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>923 (877 to 968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1205 (1141 to 1271)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>858 (786 to 938)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1124 (1026 to 1227)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>957 (907 to 1009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1156 (1080 to 1241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>858 (772 to 953)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>946 (856 to 1057)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>1035 (977 to 1086)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1272 (1217 to 1322)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1057 (1017 to 1090)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1306 (1261 to 1343)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>965 (899 to 1032)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100 (1030 to 1180)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>703 (624 to 800)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>869 (777 to 988)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>867 (828 to 905)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1040 (983 to 1113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>720 (679 to 766)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>911 (851 to 975)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>1151 (1075 to 1219)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1314 (1250 to 1379)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>808 (769 to 848)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1009 (946 to 1086)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>833 (755 to 925)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1042 (953 to 1148)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eFigure 1. US State rankings for age-standardized cardiovascular disease disability-adjusted life-year rates per 100,000 persons for both sexes combined in 2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eFigure 2. Proportion of cardiovascular disease disability-adjusted life-years due to years lived with disability in 2016.
eFigure 3. Leading level 2 cardiovascular risk factors for both sexes for Minnesota and Mississippi

A. Minnesota

<table>
<thead>
<tr>
<th>Leading risks 1990</th>
<th>Leading risks 2006</th>
<th>Mean % change number of DALYs 1990-2006</th>
<th>Mean % change all-age DALY rate 1990-2006</th>
<th>Mean % change age-standardised DALY rate 1990-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary risks</td>
<td>Dietary risks</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>High blood pressure</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>High total cholesterol</td>
<td>High total cholesterol</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Tobacco</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>High fasting plasma glucose</td>
<td>High fasting plasma glucose</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>Low physical activity</td>
<td>Low physical activity</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>Impaired kidney function</td>
<td>Impaired kidney function</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>Air pollution</td>
<td>Air pollution</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
<tr>
<td>Other environmental</td>
<td>Other environmental</td>
<td>-32.8%</td>
<td>-43.6%</td>
<td>-49.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leading risks 2016</th>
<th>Mean % change number of DALYs 2006-2016</th>
<th>Mean % change all-age DALY rate 2006-2016</th>
<th>Mean % change age-standardised DALY rate 2006-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary risks</td>
<td>7.3%</td>
<td>0.4%</td>
<td>-11.0%</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>5.3%</td>
<td>-1.4%</td>
<td>-13.7%</td>
</tr>
<tr>
<td>High body-mass index</td>
<td>12.1%</td>
<td>4.9%</td>
<td>-7.1%</td>
</tr>
<tr>
<td>High total cholesterol</td>
<td>-1.2%</td>
<td>-7.3%</td>
<td>-16.0%</td>
</tr>
<tr>
<td>High fasting plasma glucose</td>
<td>5.6%</td>
<td>-1.2%</td>
<td>-14.6%</td>
</tr>
<tr>
<td>Tobacco</td>
<td>-13.8%</td>
<td>-19.3%</td>
<td>-27.5%</td>
</tr>
<tr>
<td>Low physical activity</td>
<td>0.7%</td>
<td>-0.0%</td>
<td>-11.4%</td>
</tr>
<tr>
<td>Impaired kidney function</td>
<td>7.3%</td>
<td>0.4%</td>
<td>-11.3%</td>
</tr>
<tr>
<td>Air pollution</td>
<td>0.9%</td>
<td>-0.4%</td>
<td>-16.3%</td>
</tr>
<tr>
<td>Other environmental</td>
<td>1.7%</td>
<td>-4.0%</td>
<td>-14.7%</td>
</tr>
</tbody>
</table>

Legend:
- Environmental
- Renal
- Metabolic
Leading level 2 cardiovascular risk factors of Mississippi, both sexes

Risks are connected by lines between time periods. Behavioral risk factors are shown in red, environmental risks in blue and metabolic risks in green.

For the time period 1990 to 2008 and for 2008 to 2016, three measures of change are shown: percent change in the number of DALYs, percent change in the all-age DALY rate and percent change in the age-standardised DALY rate. Statistically significant increases or decreases are shown in bold (p < 0.05). DALYs = disability-adjusted life-years.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary risks</td>
<td>Dietary risks</td>
<td>-9.9%</td>
<td>-19.7%</td>
<td>-29.6%</td>
<td>Dietary risks</td>
<td>3.4%</td>
<td>0.5%</td>
<td>-5.6%</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>High blood pressure</td>
<td>-11.6%</td>
<td>-20.6%</td>
<td>-28.0%</td>
<td>High blood pressure</td>
<td>3.7%</td>
<td>0.6%</td>
<td>-10.2%</td>
</tr>
<tr>
<td>High total cholesterol</td>
<td>High total cholesterol</td>
<td>-12.8%</td>
<td>-22.3%</td>
<td>-31.6%</td>
<td>High total cholesterol</td>
<td>-2.6%</td>
<td>-5.3%</td>
<td>-12.2%</td>
</tr>
<tr>
<td>High body mass index</td>
<td>High body mass index</td>
<td>35.3%</td>
<td>18.9%</td>
<td>9.6%</td>
<td>High body mass index</td>
<td>5.0%</td>
<td>2.1%</td>
<td>-6.5%</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>High blood pressure</td>
<td>-9.9%</td>
<td>-19.7%</td>
<td>-29.6%</td>
<td>High blood pressure</td>
<td>3.4%</td>
<td>0.5%</td>
<td>-5.6%</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Tobacco</td>
<td>-8.8%</td>
<td>-18.7%</td>
<td>-28.9%</td>
<td>Tobacco</td>
<td>6.7%</td>
<td>3.7%</td>
<td>-10.4%</td>
</tr>
<tr>
<td>High fasting plasma glucose</td>
<td>High fasting plasma glucose</td>
<td>-27.6%</td>
<td>22.7%</td>
<td>12.0%</td>
<td>High fasting plasma glucose</td>
<td>6.7%</td>
<td>3.7%</td>
<td>-10.4%</td>
</tr>
<tr>
<td>Air pollution</td>
<td>Air pollution</td>
<td>-12.9%</td>
<td>-22.4%</td>
<td>-30.5%</td>
<td>Air pollution</td>
<td>-8.5%</td>
<td>-11.1%</td>
<td>-19.3%</td>
</tr>
<tr>
<td>Low physical activity</td>
<td>Low physical activity</td>
<td>-12.9%</td>
<td>-22.4%</td>
<td>-30.5%</td>
<td>Low physical activity</td>
<td>-8.5%</td>
<td>-11.1%</td>
<td>-19.3%</td>
</tr>
<tr>
<td>Impaired kidney function</td>
<td>Impaired kidney function</td>
<td>-8.8%</td>
<td>-18.7%</td>
<td>-28.1%</td>
<td>Impaired kidney function</td>
<td>-8.8%</td>
<td>-18.7%</td>
<td>-28.1%</td>
</tr>
<tr>
<td>Occupational risks</td>
<td>Occupational risks</td>
<td>68.3%</td>
<td>40.2%</td>
<td>29.3%</td>
<td>Occupational risks</td>
<td>14.5%</td>
<td>13.3%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Legend:
- **Environmental**
- **Behavioral**
- **Metabolic**

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
eFigure 4. US State drivers of change in cardiovascular disease from 1990 to 2016
eFigure 5. Age-standardized percentage change in disability-adjusted life-year rate between 2010 and 2016 for all cardiovascular diseases in men and women

A. Men

B. Women