Test-Retest Reliability of Memory Task Functional Magnetic Resonance Imaging in Alzheimer Disease Clinical Trials

Alireza Atri, MD, PhD; Jacqueline L. O’Brien, BA; Aishwarya Sreenivasan, MS, BA; Sarah Rastegar, BA; Sibyl Salisbury, RN; Amy N. DeLuca, BS; Kelly M. O’Keefe, BA; Peter S. LaViolette, MS; Dorene M. Rentz, PsyD; Joseph J. Locascio, PhD; Reisa A. Sperling, MD, MSc

Objective: To examine the feasibility and test-retest reliability of encoding-task functional magnetic resonance imaging (fMRI) in mild Alzheimer disease (AD).

Design: Randomized, double-blind, placebo-controlled study.

Setting: Memory clinical trials unit.

Participants: We studied 12 patients with mild AD (mean [SEM] Mini-Mental State Examination score, 24.0 [0.7]; mean Clinical Dementia Rating score, 1.0) who had been taking donepezil hydrochloride for more than 6 months from the placebo arm of a larger 24-week study (n=24, 4 scans on weeks 0, 6, 12, and 24, respectively).

Interventions: Placebo and 3 face-name, paired-associate encoding, block-design blood oxygenation level-dependent fMRI scans in 12 weeks.

Main Outcome Measures: We performed whole-brain t maps (P<.001, 5 contiguous voxels) and hippocampal regions-of-interest analyses of extent (percentage of active voxels) and magnitude (percentage of signal change) for novel-greater-than-repeated face-name contrasts. We also calculated intraclass correlation coefficients and power estimates for hippocampal regions of interest.

Results: Task tolerability and data yield were high (95 of 96 scans yielded favorable-quality data). Whole-brain maps were stable. Right and left hippocampal regions-of-interest intraclass correlation coefficients were 0.59 to 0.87 and 0.67 to 0.74, respectively. To detect 25.0% to 50.0% changes in week-0 to week-12 hippocampal activity using left-right extent or right magnitude with 80.0% power (2-sided α = .05) requires 14 to 51 patients. Using left magnitude requires 125 patients because of relatively small signal to variance ratios.

Conclusions: Encoding-task fMRI was successfully implemented in a single-site, 24-week, AD randomized controlled trial. Week 0 to 12 whole-brain t maps were stable, and test-retest reliability of hippocampal fMRI measures ranged from moderate to substantial. Right hippocampal magnitude may be the most promising of these candidate measures in a leveraged context. These initial estimates of test-retest reliability and power justify evaluation of encoding-task fMRI as a potential biomarker for signal of effect in exploratory and proof-of-concept trials in mild AD. Validation of these results with larger sample sizes and assessment in multisite studies is warranted.

Arch Neurol. 2011;68(5):599-606

Original Contribution

With many potential therapies for Alzheimer disease (AD) entering large-scale clinical trials, biomarkers that can rapidly detect a signal of effect or efficacy are critically needed. Symptomatic and/or disease-modifying therapies may acutely or subacutely alter synaptic function, which may serve as a predictor of long-term response. Functional magnetic resonance imaging (fMRI) may prove valuable to detect effects that modulate brain networks in early-phase AD trials, but the practicality of implementing longitudinal fMRI and the test-retest reliability of task-related fMRI remains unknown. Also lacking are power estimates to inform investigators regarding sample sizes required to reasonably detect AD treatment-related effects in fMRI.

Task-related fMRI studies1-2 have primarily focused on cross-sectional group comparisons of AD patients to elderly control individuals and patients with mild cognitive impairment (MCI). The fMRI studies3-16,19,20 in AD or MCI that assessed effects of cholinesterase inhibitors on blood oxygenation level-dependent (BOLD) fMRI activity have been exploratory or pilot studies or lacked a randomized controlled trial (RCT) design and have provided limited information regarding the test-retest reliability of fMRI in this population. We implemented fMRI in a double-blind, placebo-controlled RCT format to assess the feasibility and test-retest reli-
ability of fMRI in 12 patients with mild AD randomized to the placebo arm of the study.

METHODS

STUDY PARTICIPANTS

Twelve patients with mild AD (Mini-Mental State Examination [MMSE] scores, 16-26) were randomized to the 12-week placebo arm of a larger (n=24 patients) and longer (24 weeks) AD pharmacologic fMRI study. Inclusion criteria were National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association criteria for probable AD, fluency in English, lack of focal lesions on neuroimaging scans, taking a stable dosage of donepezil hydrochloride for longer than 6 months, and having a study partner (eg, spouse or relative) to monitor adherence. Exclusion criteria were unstable or severe medical or psychiatric illness, contraindication to MRI, use of another investigational agent within 2 months, use of a cholinesterase inhibitor other than donepezil hydrochloride or an antipsychotic within 6 months, and ever having taken memantine hydrochloride. Patients and partners provided consent in accordance with the Human Research Committee guidelines. Study participants were remunerated $50 after each fMRI.

STUDY DESIGN AND PROCEDURES

The overall study spanned 9 visits in 24 weeks and used an RCT (50.0% memantine and donepezil hydrochloride, 50.0% placebo and donepezil hydrochloride) parallel-group design for 12 weeks, followed by a 12-week, single-blind period when all patients received drug therapy (100% memantine and donepezil hydrochloride). The reliability study data were obtained from the fMRI scan results at weeks 0 (baseline or T1), 6 (T2), and 12 (T3) in the placebo group only. Neuropsychological and clinical assessments included the MMSE, the AD Assessment Scale–Cognitive, and the Clinical Dementia Rating (CDR) scale.

fMRI PARADIGM

The details of the fMRI paradigm, sequencing, and preprocessing activities are described in previously published studies1,3,6,7,27 and online (eAppendix; http://www.archneur.org). The paradigm is composed of 3 conditions presented in successive blocks: novel face-name pairs, repeated face-name pairs, and fixation cross. Eighty-four novel pairs and 42 repeated pairs were displayed for 5 seconds each across 6 runs. Study participants were instructed to try to remember the name paired with each face. Immediately after scanning, 2 postscan behavioral/memory tests were administered: a face recognition (yes/no response) task and a free recall of name (for yes responses) task and a 2-alternative forced-choice name-recognition-of-face task.

IMR PARADIGM

The paradigm is composed of 3 conditions presented in successive blocks: novel face-name pairs, repeated face-name pairs, and fixation cross. Eighty-four novel pairs and 42 repeated pairs were displayed for 3 seconds each across 6 runs. Study participants were instructed to try to remember the name paired with each face. Immediately after scanning, 2 postscan behavioral/memory tests were administered: a face recognition (yes/no reply) and free recall of name (for yes responses) task and a 2-alternative forced-choice name-recognition-of-face task.

IMAGE ACQUISITION, PREPROCESSING, AND QUALITY ASSURANCE

Data were acquired on a 3-T GE scanner (GE Healthcare, Chalfont St Giles, England). Each functional run was 4 minutes, 15 seconds (102 time points; first 4 discarded for T1 stabilization). Preprocessing was performed with SPM2 statistical software (http://www.fil.ion.ucl.ac.uk/spm/software/spm2/), using 3 × 3 × 3-mm resectioning in Montreal Neurological Institute space, 8-mm full width at half maximum gaussian smoothing, and a 260-second high-pass filter.

Because of scanner repair, 1 patient underwent scans at 6 and 12 weeks, respectively, via a 3-T Siemens scanner (Siemens Medical, Munich, Germany). Data quality assurance included manual inspection of all images sequentially for scanner spiking and excessive motion and automated artifact detection algorithms that repaired any time point with a mean signal greater than 3 SDs of the mean global signal of each patient using an interpolation from surrounding scans (9 patients were affected). One week 6 scan (T2) was irreparable because of excessive intrascan movement and was imputed using T1 and T3 averages from the patient.

STATISTICAL ANALYSIS: fMRI AND CLINICAL MEASURES

Prespecified analyses focused on 2 methods to assess changes in magnitude, calculated as the percentage of signal change, and extent, calculated as the percentage of active voxels, of activations for novel-greater-than-repeated (N > R) stimuli between week 0 (baseline or T1) and week 12 IMRs (ie, T1 to T3 change in N > R contrast). Prespecified primary analyses were whole-brain t test analyses and statistical parametric maps with significance thresholds at P < .001 and extent threshold of 5 contiguous voxels and hippocampal region-of-interest (ROI) analyses with small volume corrections for multiple comparisons within a priori, anatomically defined hippocampal ROIs.28

For comparison, secondary analyses were performed on non-hippocampal, a priori, anatomically defined ROIs, including bilateral precuneus and posterior cingulate cortices obtained in template space using the MarsBaR application (http://marsbar.sourceforge.net/), which have previously shown robust and selective task-related and spatiotemporally correlated activity in this fMRI paradigm.1 Repeated-measures analyses of covariance (ANCOVAs) assessed changes in clinical measures in the 12 weeks between T1 and T3 IMRs.

TEST-RETEST RELIABILITY OF fMRI ACTIVATIONS IN RELIABILITY ROIs

Test-retest reliability for the extent and magnitude of N > R activity from baseline (T1) to week-12 (T3) IMRs was assessed using 2 complementary approaches: intraclass correlation coefficients (ICCs), using a variation of ICC assessing agreement of score values (not merely correlation) for random-effects models, referred to by Shrout and Fleiss32 as ICC (2,1) for reliability at a single point in time and ICC (2,k) for that of an average score across a number of time points of assessment (eAppendix) and power analysis and sample size determination.34 Because no standard or widely accepted definition for general adjectives exists that describes reliability measures, ICC values, and ranges, we chose to adopting conservative terms by using the definition proposed by Shrout31 when qualitatively referring to ICC values and ranges: virtually none (0.00, 0.10), slight (0.11, 0.40), fair (0.41, 0.60), moderate (0.61, 0.80), or substantial (0.81, 1.0).33 We did not use the widely quoted but much more liberal terms of Landis and Koch32 when describing reliability values (slight [0.0, 0.20], fair [0.21, 0.40], moderate [0.41, 0.60], substantial [0.61, 0.80], or almost perfect [0.81, 1.00]) or several other proposed descriptors.35-34 Power analyses estimated required sample sizes sensitive to 25%, 50%, and 75% changes (up or down) from baseline in extent and magnitude at power levels of 70%, 80%, and 90% with 2-sided α < .05.30

To determine whether effects of demographic (eg, age and educational level), clinical (eg, CDR, CDR sum of boxes [CDR-SB], and MMSE scores), and postscan memory and behavioral measures contributed to hippocampal ROI test-retest variability, thereby requiring adjustment for them in the ICC calcula-
tions, interactions of baseline levels of these variables with time, in addition to their main effects as covariates, were included as predictor terms in a repeated-measures ANCOVA in which extent or magnitude of fMRI activity was the dependent variable. Unlike main effects of covariates, any variance due to the covariate \(\times \) time interaction, unless removed, is pooled into the patient \(\times \) time interaction error variance and inappropriately augments estimated unreliability, although it represents true score variance, biasing the ICC downward. We estimated and removed this confounder via regression and separation of residuals. Power analyses were based on these adjusted ICCs. The eAppendix online lists all ICC formulas and details of calculations (with and without adjustment) and their rationale.

RESULTS

DEMOGRAPHICS AND CLINICAL CHARACTERISTICS

Baseline characteristics (Table 1) of the placebo arm (n=12) did not differ widely from those of the larger group (n=24; MMSE score range, 18-26) or from the drug arm (n=12), which is not included in this report and will be reported elsewhere in an analysis of potential antidementia drug effects on fMRI signals. Except for a decrease on postscan memory test 2 scores, no significant changes were found between baseline and week 12.

FEASIBILITY, TOLERABILITY, AND DATA QUALITY

All patients enrolled in the larger study completed the 24-week study with 4 fMRI scans. A total of 95 of the 96 fMRI scans yielded acceptable quality data. Baseline whole-brain N > R activation maps for the group of 24 patients and the placebo arm (n=12) showed similar regional activity (Figure 1), and difference maps between them were null (ie, had no significant clusters; data not shown).

STABILITY OF fMRI WHOLE-BRAIN MAPS AND HIPPOCAMPAL ROI ACTIVITY ACROSS 12 WEEKS

Reliability analyses were performed in the placebo subgroup (n=12). Regional activity patterns for N > R contrasts were consistent with those of past studies using the same paradigm. At each scan, areas of significant N > R activity were found in the bilateral hippocampi, right inferior frontal cortex, right cingulate, and right prefrontal cortex (Figure 1B-C and Table 2). Also, whole-brain N > R activation maps for all permutations of difference maps among time points T1, T2, and T3 (eg, T1-T2 and T1-T3) were stable and showed no clusters of significant activity differing between sessions.

The mean extent and magnitude for right and left hippocampal ROIs did not significantly vary across sessions (weeks 0, 6, and 12) (Figure 2) or from the larger group of 24 patients at baseline (eFigure). Repeated-measure ANCOVAs revealed no significant changes for hippocampal ROI signals with or without covariance adjustments of baseline characteristics. Sensitivity analysis that varied statistical (\(P = 0.01 - 0.001 \)) and extent (2-10 contiguous voxels) thresholds at several cutoff points showed no differences for all combinations of extent and magnitude measures compared with the a priori chosen thresholds of \(P = 0.001 \) and 5-voxel extent.

ICCS, POWER, AND SAMPLE SIZE ANALYSIS

Table 3 lists the hippocampal ICCs, with and without adjustment for potential baseline CDR-SB score &

Table 1. Demographics and Clinical and Memory Measures at Baseline (T1) and Weeks 6 (T2) and 12 (T3) for the Larger Study and the Placebo Arm

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Patients (n=24)</td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
</tr>
<tr>
<td>Women, No. (%)</td>
<td>15 (62.5)</td>
</tr>
<tr>
<td>Age, y</td>
<td>71.6 (1.7)</td>
</tr>
<tr>
<td>Educational attainment, y</td>
<td>16.0 (0.6)</td>
</tr>
<tr>
<td>Clinical measures</td>
<td></td>
</tr>
<tr>
<td>MMSE, correct</td>
<td>24.0 (0.7)</td>
</tr>
<tr>
<td>ADAS-Cog, errors &</td>
<td>26.2 (1.9)</td>
</tr>
<tr>
<td>CDR-SB score &</td>
<td>4.7 (0.5)</td>
</tr>
<tr>
<td>CDR score &</td>
<td>1.0 (0.1)</td>
</tr>
<tr>
<td>Postscan memory tests, No. (% correct)</td>
<td></td>
</tr>
<tr>
<td>Recall of name</td>
<td>67.0 (1.9)</td>
</tr>
<tr>
<td>2-Alternative forced choice name recognition</td>
<td>68.8 (3.3)</td>
</tr>
</tbody>
</table>

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale–cognitive subscale; CDR, Clinical Dementia Rating; CDR-SB, Clinical Dementia Rating scale sum of boxes; ellipses, not applicable; fMRI, functional magnetic resonance imaging; MMSE, Mini-Mental State Examination.

a In the placebo arm (n=12), the data of which were used to assess fMRI test-retest reliability, no significant changes were found in performance during a 12-week period except decrease on postscan name-recognition test performance between baseline and subsequent visits.

b Higher values on ADAS-Cog, CDR-SB, and CDR represent less strong performance and more advanced dementia severity. In contrast, higher values on MMSE and memory tests 1 and 2 represent stronger performance.

\(p < .05 \) difference compared with T1.

time interactions, which were found to be significant in repeated-measures ANCOVA for the right hippocampus and estimated sample sizes required to detect 25.0%, 50.0%, and 75.0% mean changes from baseline on extent and magnitude fMRI measures based on 80.0% power with a 2-sided \(\alpha = .05 \). To provide greatest generalizability, individual ICCs (ie, single ICCs) were calculated using a random-subjects term. Mean ICCs (averaged across 3 scans) are also reported (eAppendix).

For the right hippocampus, higher baseline CDR-SB scores were associated with larger rates of decrease in hippocampal activity. Adjusted ICCs, which pre-removed variance due to CDR-SB score \(\times \) time interactions, increased ICC estimates for the right hippocampus only. For right hippocampus extent, a raw individual ICC of 0.33 yielded an adjusted individual ICC of 0.59, but a raw mean ICC of 0.50 yielded an adjusted mean ICC of 0.75. For the right hippocampus magnitude, a raw individual ICC of 0.67 yielded an adjusted individual ICC of 0.87, but a raw mean ICC of 0.80 yielded an adjusted mean ICC of 0.93. For comparison, ICCs for the precuneus and posterior cingulate, important hubs in the default intrinsic connectivity network, were lower (range, 0.33-0.60) and unaffected by adjustments (eTable 1).

For 80.0% power and a group-level change of 50.0% from baseline in extent to be detected in the left hippocampus, 15 patients would be required. For similar power and 50.0% change in magnitude, 125 patients would be needed. For similar 50.0% changes to be detected in the right hippocampus for extent or magnitude, 14 patients would be required. At every power level (70.0%, 80.0%, 90.0%), left hippocampal magnitude was predicted to require sample sizes of approximately 1 order of magnitude greater than the other measures (left-side or right-side extent, right-side magnitude) (eTable 2).

This study demonstrates the feasibility of implementing task-related fMRI within the typical format of an AD RCT. Test-retest reliability of encoding-related fMRI was assessed using patients from the placebo arm who underwent fMRIs 12 weeks apart. Changes in fMRI activity were assessed globally via whole-brain map-level \(t \) tests and regionally via ICCs for magnitude and extent of N > R activity in a priori structurally defined hippocampal ROIs. Test-retest reliability occurred mostly in the moderate-
to–substantial range; whole-brain contrast maps showed
stability, and hippocampal ICCs, adjusted for baseline
disease severity by time-related decline (which only af-
fected right-side magnitude), ranged from 0.6 to 0.9. If
a priori focus is directed at the right hippocampus or
changes in extent (ie, percentage of active voxels), power
estimates predict that for this paradigm, relatively mod-
est sample sizes may detect group-level, 12-week fMRI
changes in the 25.0% to 50.0% range.

We have demonstrated the feasibility of implement-
ing multiple fMRI sessions in a longitudinal AD RCT for-
mul. Study participants tolerated an intensive imaging pro-
tocol with high yield of favorable-quality data (95 of 96
scans yielded acceptable data). Our results support the
feasibility of successfully implementing task-related fMRI
paradigms in mild AD across multiple scans and weeks.

The other objective of the study, to assess whole-
brain, map-level fMRI and hippocampal test-retest reli-
ability, was assessed in individuals randomized to the pla-
cebo arm. This allowed power calculations to predict
sample sizes needed to accurately detect significant
changes in hippocampal activity. These estimates may in-
form design and interpretation of future exploratory and
proof-of-concept trials that use fMRI as a potential AD
biomarker.

The strengths of the study include its rigorous RCT
design; the inclusion of well-characterized patients
undergoing stable, long-term cholinergic therapy; high
compliance and follow-up; the use of a robust and well-
characterized associative memory battery; its block-
design encoding paradigm; and the use of standard fMRI
software, tools, and processing streams that increase gen-
eralizability. Also, reliability was assessed for conver-
gence using several approaches, sensitivity analysis
showed robustness of extent and magnitude values to per-
turbations in statistical and extent of contiguous-voxels
thresholds, and power projections were obtained to guide
sample sizes for future early-phase fMRI RCTs, particu-
larly those at single sites involving patients with mild AD.

The patterns of regional fMRI activity are consistent
with those in previous studies1,2 and support the valid-
ity of focusing on changes in a priori–defined hippocam-
pal and related ROIs in which drug-related effects on epi-
sodic memory encoding are observed, particularly in this
encoding paradigm.1,2,7 These studies suggest specificity
for hippocampal activity and inversely related activity be-
tween the hippocampus and precuneus for subsequent
memory success or failure and face-name, encoding-
related activity. Reassuringly, hippocampal ROIs showed
the highest ICCs compared with several other prese-
lected regions in a distributed memory network.

A robust fMRI biomarker of encoding and retrieval pro-
cesses would ideally include 1 or more measures of shift-
ing patterns of activity (signatures) in core network hubs
that include, depending on cognitive load and task speci-
ficity, hippocampal and related medial temporal lobe areas;
precuneus, posterior cingulate, and related medial and
lateral parietal regions; and medial inferior and dorso-
lateral frontal cortices. Although this study primarily fo-
cuses on longitudinal fMRI feasibility and reliability in
the hippocampus, a central node in memory acquisition
and integration, future studies will leverage cognitive net-
works by integrating activity patterns in hubs, includ-
ing medial and lateral parietal and medial and inferior
frontal regions; assess reliability and power analysis for
fMRI network signals; and explore potential drug-
related effects.

Overall, we opted for a conservative bias and greater
focus on generalizability. We used individual (single)
ICCs, not group (mean) ICCs (arithmetic average for a
group of scans) that would have provided higher values
(Table 3). Calculated ICCs also assumed random scans
(i.e., model 2 ICCs), as opposed to fixed ones (i.e., model
3 ICCs), thereby increasing the generalizability of re-
results. Hippocampal ICCs, with or without adjustment for
baseline CDR-SB scores, are generally higher than those
recently reported in healthy elderly controls and pa-
tients with MCI in verbal episodic memory encoding and
retrieval fMRI tasks 6 weeks apart.9,10 Also, power predic-
tions for estimated sample sizes to detect changes in fMRI
measures 12 weeks apart assume modest (25.0%–
75.0%) and bidirectional changes (2-sided α values) in
hippocampal activity. In similar paradigms, ROI effect
sizes were larger or unidirectional, including in the hip-
pocampi of young patients administered scopolamine
(percentage change vs placebo, −53% for extent and −57%}

Table 3. ICCs and Predicted Sample Size Estimates for Left and Right Hippocampal ROIs

<table>
<thead>
<tr>
<th>ROI Measure (NovR)</th>
<th>Individual ICCs for Baseline to Week 12 Scans (Mean ICC)</th>
<th>Predicted Sample Size Required to Detect a Potential 12-Week Change From Baseline With 80.0% Power (2-Sided α = .05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Adjusted</td>
</tr>
<tr>
<td>Left hippocampus extent</td>
<td>0.68 (0.81)</td>
<td>0.74 (0.85)</td>
</tr>
<tr>
<td>Left hippocampus magnitude</td>
<td>0.67 (0.80)</td>
<td>0.67 (0.80)</td>
</tr>
<tr>
<td>Right hippocampus extent</td>
<td>0.33 (0.50)</td>
<td>0.59 (0.75)</td>
</tr>
<tr>
<td>Right hippocampus magnitude</td>
<td>0.67 (0.80)</td>
<td>0.87 (0.93)</td>
</tr>
</tbody>
</table>

Abbreviations: fMRI, functional magnetic resonance imaging; ICC, intraclass correlation coefficient; NovR, novel vs repeated face-name contrast; ROI, region of interest.

* ROI and activation measure (extent and magnitude) hippocampal ROIs.
* Individual ICCs are the raw individual ICCs for T1 (baseline=week 0) to T3 (weeks 0-12) fMRI scans and adjusted individual ICCs.
* Mean ICCs for the mean score across the time points are shown in parentheses.
* Account for Clinical Dementia Rating scale sum of boxes score × time interactions.
* Predicted sample size estimates required to detect 25.0%, 50.0%, and 75.0% 12-week changes from baseline fMRI measure with 80.0% power assuming 2-sided α = .05 (ie, bidirectional change from baseline) and using adjusted ICC values.
for magnitude) and lorazepam (percentage change vs placebo, −52% for extent and −57% for magnitude).27 and in fusiform regions of AD patients administered rivastigmine (percentage change vs no rivastigmine, +95% for magnitude in left and +600% in right fusiform regions).8 With the use of exploratory analyses, unidirectional a priori hypotheses (eg, IMRI activity will increase with drug or intervention) or exclusion of left hippocampal magnitude as a primary signal measure may allow modest sample sizes to detect changes in the 50.0% range. For this paradigm, population (ie, mild AD), and interval of several days to weeks, the right hippocampal signal, especially the magnitude measure (ie, percentage change in right hippocampal BOLD signal),36 is likely to be most sensitive to physiologic, pathologic, and pharmacologic stressors; has substantial measurement reliability (during these short intervals unless corrected for trait instability); and potentially may be useful as an exploratory biomarker of trait, state, rate, or signal of effect. Later in the disease state, this may not be so because the neural correlates that affect the BOLD signal changes may be muted. Pairing an IMRI scan with a clinical visit at week 12 provides a parsimonious design consistent with proof-of-concept AD trials. For experimental drugs with potential subacute symptomatic effects, this provides a sufficient interval to detect signals of clinical efficacy beyond 4-week to 8-week windows when placebo effects may mingle with drug-related effects in such a way that the elements cannot be distinguished or separated.37,38 Finally, the tools and methods used for functional data analyses were simple, standard, and widely available (eg, statistical parametric map, Montreal Neurological Institute template space, MarsBaR).

It is important to recognize that the interaction of baseline CDR-SB score with a decrease in right hippocampal fMRI signal over time is not due to fMRI measurement inaccuracy or unreliability but is an estimable component of putative real variation that can be accounted for independently and removed from an adjusted ICC (through regression and residualizing methods), as was done in our study. Otherwise, it might confound as measurement unreliability and bias ICCs downward. Hence, we opted for the more conservative approach of removing this confounding source of variance from the denominator of the ICC formula but without adding it to the numerator (eAppendix). The finding that patients with greater impairment, ie, those with higher baseline CDR-SB scores, exhibited a greater decrease in right hippocampal activity 12 weeks later is consistent with studies that show a decreased hippocampal signal via fMRI in AD relative to cognitively intact older controls and patients with MCI.3-5,23 It is also consistent with the hypothesis that once AD patients meet criteria for mild dementia, task-related hippocampal activity may rapidly decline with advancing illness.34 Similarly, AD patients with smaller hippocampal volumes subsequently show a greater rate of decrease in hippocampal volumes during 1 year.39 Baseline levels of cognition and function and their interactions with time in study are also important determinants of clinical trajectory of decline.40-42 Finally, improvements compared with raw ICCs were specific to the right hippocampus; raw and adjusted ICCs were not substantially different in the left hippocampus and comparison ROIs (Table 3 and eTable 1). This is not surprising because the face-name paradigm provides greater novelty and cognitive demands in the visual domain, and previous studies1,3-7,27 have shown task-related, age-related, and disease-related sensitivity for this paradigm in the right hippocampus.

These data and interpretations also have limitations and caveats. Although this study provides favorable internal validity and successful implementation at a single experienced site, results could vary considerably across multiple sites, scanners, platforms, and AD populations. These results require validation in single-site studies and assessment of whether findings for whole-brain and hippocampal signal reliability will accurately reflect scaling in multisite studies. Our patients were experiencing the mild clinical stages of AD (CDR of 1; mean [SD] MMSE score, 24.0 [0.7]), were highly educated, and were receiving stable, long-term donepezil hydrochloride therapy. Although generalizable to most candidates with AD eligible for currently enrolling in experimental drug RCTs, extrapolation to those who are drug naive, use other antidementia medicines, or have low educational levels requires caution. Also, on the basis of our previous experience, it is likely that most patients with moderate-stage (CDR, 2) AD would have difficulty completing this IMRI paradigm and performing above chance levels. High internal validity and patient homogeneity in our study may have resulted in underestimation of ICCs due to low between-patient variance. Although we do not measure or adjust for individual or native hippocampal volumes or possible changes, given the low annual rates of hippocampal atrophy in AD, it is unlikely that atrophy during a 12-week period would significantly affect the accuracy of ROI boundaries and IMRI signals.30-45 Our results suggest extent and right hippocampal measures (extent and magnitude) may be more robust and efficient for power projections in visual-verbal, paired-associate paradigms. The left magnitude measure had only moderate ICCs (0.67), resulting in the need for many more patients to detect 25.0% to 50.0% effects. Except for the left hippocampus, magnitude ICCs were approximately 0.1 to 0.3 higher than extent ICCs (Table 2 and eTable 1). However, power analysis did not show an advantage of using magnitude measures, especially on the left side. This finding underscores that ICCs and sample size estimates provide somewhat complementary information for pragmatic design and interpretation of biomarkers in AD RCTs.

Importantly, our short-term study does not address the usefulness of fMRI in detecting disease-modifying effects in longer-term studies in AD populations. It is possible that a subacute fMRI effect will be predictive of longitudinal change, but as with positron emission tomography and structural MRI,45,46 the ultimate validation of fMRI as a potential biomarker of efficacy will require incorporation into an AD therapeutic trial demonstrating positive clinical benefit. Caution should be exercised in general pertaining to the nature of the BOLD fMRI signal as a surrogate for neural activity. Changes in the BOLD signal may reflect other neurophysiologic processes, including microneurovascular coupling, and not necessarily changes in dendritic synaptic local field potentials. Future studies will assess test-retest reliabil-
ity by defining ROIs in native space, leveraging network
dynamics, and using modeling to quantify functional
connectivity.

In conclusion, our study demonstrated moderate-to-
substantial test-retest reliability for a face-name, paired-
associate encoding, block-design fMRI paradigm per-
formed by patients with mild AD at a single site. These
highly focused findings suggest that significant BOLD
fMRI changes in hippocampal signals occur acutely or sub-
acutely within 12 weeks due to a potential intervention or
disease progression, the signal, noise, and measurement vari-
ability characteristics of longitudinal fMRI measures using
similar encoding paradigms may allow their detection with
reasonable accuracy. Power analyses suggest that detec-
tion of changes from baseline hippocampal activity in the
50.0% range may require dozens, not hundreds, of study participants, especially if a priori or exploratory focus is on
right hippocampal or extent measures. Meanwhile, small
group-level changes in the 25.0% range may be detectable
with sample sizes currently used in small phase 2 AD trials.
These results support the feasibility of using fMRI as a po-
tential biomarker in early-phase proof-of-concept RC Ts to
detect whether a drug is acutely or subacutely reaching or
affecting the brain or having a specific targeted or biologi-
cal effect (as measured via BOLD fMRI) on a brain region
or network. This study provides evidence that task-
related fMRI is feasible to implement longitudinally in mild
AD at a single site and may have sufficient test-retest reli-
ability to be incorporated in early-phase clinical trials. In
combination with other experimental measures, task fMRI
may potentially help detect a signal of effect and guide early-
development programs for novel AD therapeutics.

Accepted for Publication: October 14, 2010.
Correspondence: Alireza Atri, MD, PhD, Memory Dis-
orders Unit, Massachusetts General Hospital, 15 Park-
man St, Wang Ambulatory Care Center 715, Boston, MA
02114 (atri@nmr.mgh.harvard.edu).

Author Contributions: Drs Atri and Sperling had full ac-
cess to all the data in the study and take responsibility for
the integrity of the data and the accuracy of the data anal-
ysis. Study concept and design: Atri, Rentz, and Sper-
ling. Acquisition of data: Atri, O’Brien, Rastegar, Salisbury,
DeLuca, O’Keefe, and Rentz. Analysis and interpre-
tation of data: Atri, Sreenivasan, LaViolette, Rentz,
Locascio, and Sperling. Drafting of the manuscript: Atri,
Sreenivasan, DeLuca, Rentz, and Sperling. Critical revi-
sion of the manuscript for important intellectual content:
Atri, O’Brien, Rastegar, Salisbury, O’Keefe, LaViolette,
Locascio, and Sperling. Statistical analysis: Atri, LaViolette,
and Locascio. Obtained funding: Atri and Sperling. Admin-
istrative, technical, and material support: Atri, Sreeniva-
san, Rastegar, Salisbury, DeLuca, O’Keefe, and LaVio-
ette. Study supervision: Atri, Rentz, and Sperling.

Financial Disclosure: Dr Atri has served as a consultant or
on the scientific advisory board or has received lecture honoraria from Eisai Pharmaceuticals, Forest Pharma-
cueticals Inc, Merck & Co Inc, Pfizer Inc, and Wyeth Pharma-
cueticals Inc. The principal authors (Drs Atri and Sper-
ling) retain full control of the data and publication rights.

Funding/Support: The study was supported by Na-
tional Institute on Aging grants IK23 AG027171 (Dr Atri)
and RO1 AG027435 (Dr Sperling); the Harvard–
Massachusetts Institute of Technology Health Sciences
and Technology Pfizer-Merck Clinical Investigator Train-
ning Program (Dr Atri); the National Institutes of Health
loan repayment program (Dr Atri); Investigator-
Initiated Research Grants from Forest Pharmaceuticals
Inc and the Harvard Center for Neurodegeneration and
Repair; the Clinical, Neuroimaging, and Statistics Cores
of the Massachusetts Alzheimer’s Disease Research Cen-
ter (National Institute on Aging grant 5 P50AG05134 to
Dr Growdon and Bradley T. Hyman, MD, PhD); and the
Geriatric Research Education and Clinical Center at the
Edith Nourse Rogers Memorial Veterans Administration
Bedford Medical Center. Less than 30% of this re-
search was supported by an Investigator-Initiated Re-
search Grant from Forest Pharmaceuticals Inc.

Online-Only Materials: The eAppendix, eFigure, eTable 1,
eTable 2 are available at http://www.archneurol.com.

Additional Contributions: Kim Celone, PhD, Kristina De-
Peau, MPH, Eli Diamond, MD, Saul Miller, MS, Matja
Pihlamajaki, MD, and Meghan Searl, PhD, provided as-
sistance with data collection and preliminary data pro-
cessing. Lynn Shaughnessy, MA, provided assistance with
manuscript preparation. John Growdon, MD (Massa-
achusetts General Hospital Memory Disorders Unit and
Massachusetts Alzheimer’s Disease Research Center),
provided significant assistance with recruitment of partici-
ants, obtaining space and resources, and guidance, and
Bruce Rosen, MD, PhD (Martinos Center for Biomed-
ical Imaging), provided guidance, space, and resources for
this research. Finally, and most important, we ex-
press our deep gratitude for the commitment of the pa-
tients, family members, and caregivers without whose gen-
orous contribution and dedication this research would not
be possible.

REFERENCES

1. Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in
mild cognitive impairment and Alzheimer’s disease: an independent component
2. Diamond EL, Miller S, Dickerson BC, et al. Relationship of fMRI activity to cli-
tical trial memory measures in Alzheimer disease. Neurology. 2007;69(13):1331-
1341.
3. Dickerson BC, Salat DH, Bates JF, et al. Relationship of fMRI activity to clini-
4. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in
mild cognitive impairment compared to normal aging and AD. Neurology. 2005;
65(3):404-411.
Hippocampal activation in adults with mild cognitive impairment predicts sub-
sequent cognitive decline. J Neurol Neurosurg Psychiatry. 2008;79(6):630-
635.
6. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in
young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psy-
2001;14(3):129-139.
8. Rombouts SARB, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain ac-