Continuous Spectrum of Pharyngeal-Cervical-Brachial Variant of Guillain-Barré Syndrome

Takahide Nagashima, MD, PhD; Michiaki Koga, MD, PhD; Masaaki Odaka, MD, PhD; Koichi Hirata, MD, PhD; Nobuhiro Yuki, MD, PhD

Background: Pharyngeal-cervical-brachial weakness (PCB) is considered a variant of Guillain-Barré syndrome (GBS). Because of its rarity, there have been no studies of large numbers of patients with PCB.

Objective: To clarify the nosological classification of PCB.

Design: Retrospective study.

Setting: Academic research.

Patients: Medical records were reviewed of patients who manifested progressive weakness of the pharynx, neck, and upper limbs within 4 weeks of initial onset.

Main Outcome Measures: Clinical features were analyzed, and antecedent infections and antiganglioside antibodies were investigated.

Results: Diagnoses for 100 patients were “pure PCB” (n=13), PCB with preserved muscle stretch reflexes (n=8), GBS overlap (n=48), Fisher syndrome overlap (n=26), and Bickerstaff brainstem encephalitis overlap (n=5). Serological test results showed that 31.0% of antecedent infections in PCB were caused by Campylobacter jejuni. Of the antiganglioside antibodies tested, anti-GT1a IgG antibodies were positive in 51.0% of the patients. Anti-GQ1b IgG antibodies (a serological marker of Fisher syndrome and Bickerstaff brainstem encephalitis) were positive in 39.0%. The IgG antibodies to GM1, GM1b, GD1a, or GalNAc-GD1a (serological markers of an axonal GBS subtype) were positive in 27.0%.

Conclusion: This large study identified the clinical profiles of PCB. Clinical overlapping, frequent C. jejuni infection, and common antiganglioside antibodies present in PCB, GBS, Fisher syndrome, and Bickerstaff brainstem encephalitis provide conclusive evidence that PCB and these conditions form a continuous spectrum.

Arch Neurol. 2007;64(10):1519-1523
FS and BBE are associated with anti-GQ1b IgG antibodies, which cross-react with GT1a. In contrast, IgG antibodies to GM1b, GD1a, and GT1a have been reported in several patients with PCB. Because of its rarity, we are aware of no comprehensive studies of large numbers of patients with PCB. For this study, we reviewed the medical records of 100 patients in whom there was acute progressive weakness of the pharynx, neck, and upper limbs, and we investigated the clinical and serological profiles of the patients to establish the nosological classification of PCB.

METHODS

PATIENTS

From August 1, 1999, to February 29, 2004, we received about 6600 requests from Japanese physicians to test serum antiganglioside antibodies in patients who had various neurological disorders. Patients’ clinical features were reviewed in their medical records, and additional questionnaires were obtained from each primary physician to identify cases in which progressive weakness of the pharynx, neck, and upper limbs had developed within 4 weeks of the initial onset. Information on age, sex, initial symptoms, cerebrospinal fluid findings, antecedent infectious symptoms, and neurological signs during the illness were obtained. Approval of the ethics committee at our university was obtained to perform this study.

Clinical features used in the diagnosis of “pure PCB” were (1) progressive weakness predominant in the neck, arms, and oropharyngeal muscles by 4 weeks after the initial onset, (2) hypoflexia or areflexia in the arms, and (3) no weakness in the legs. Patients with PCB-like symptoms who had normal to brisk muscle stretch reflexes (MSR) throughout the illness were categorized as having PCB with preserved MSR, and those who had leg weakness were categorized as having GBS overlapping PCB (GBS overlap). Based on the findings of Fisher and Bickstaff, progressive symmetric external ophthalmoplegia and areflexia by 4 weeks was a required clinical feature for the diagnoses of FS and BBE. Hypoflexia or areflexia and clear consciousness were required for the diagnosis of BBE, whereas impaired consciousness was required for the diagnosis of FS. Hyporeflexia and areflexia were not exclusion criteria for the diagnosis of BBE, as half of the original cases had hypoflexia or areflexia. Patients with PCB-like symptoms who showed ophthalmoplegia, areflexia, and alert consciousness were classified as having PCB overlapping FS (FS overlap), and patients with ophthalmoplegia, areflexia, and altered consciousness were classified as having PCB overlapping BBE (BBE overlap). For the diagnosis of these conditions, the following must be excluded: botulism, diphtheria, brainstem tumor, neuro-Behçet disease, multiple sclerosis, polymyositis, myasthenia gravis, Wernicke encephalopathy, toxic or metabolic neuropathy, acute disseminated encephalomyelitis, and vascular disease involving the brainstem.

SEREOLOGICAL STUDIES

Evidence of recent infection by C. jejuni, Haemophilus influenzae, Mycoplasma pneumoniae, cytomegalovirus, or Epstein-Barr virus was assayed serologically as previously described. Serum samples from patients with GBS (n = 73), patients with FS (n = 73), and hospital control subjects (n = 73) were the controls used in the statistical analysis.

Serum IgG antibodies to GT1a, GQ1b, GM1, GM1b, GD1a, and GalNAc-GD1a were measured by enzyme-linked immunoabsorbent assay as described elsewhere. In this study, serum was considered positive for antiganglioside antibodies when the absorbance value was 0.5 or higher at a dilution of 1:500 because this high cutoff level gives high specificity, as reported elsewhere. An absorption study was performed as described previously. The absorption rate was expressed as the percentage of absorbance obtained with and without absorption.

STATISTICAL ANALYSIS

Differences in medians were examined using the Mann-Whitney test. Differences in frequencies between groups were compared by χ² or Fisher exact test (2-tailed) using commercially available statistical software (SPSS 12.0J; SPSS Inc, Chicago, Illinois). A difference was considered statistically significant at P < .05.

RESULTS

One hundred patients (median age, 43 years [56 men and 44 women]) had manifested acutely progressive weakness of the pharynx, neck, and arms (Table 1). Limb weakness invariably predominated in the arms. A history of antecedent illness was present in 81.0% of the patients (upper respiratory tract infectious symptoms only in 51.0%, gastrointestinal tract symptoms only in 10.0%, and both symptoms in 20.0%). The most frequent initial symptom was arm weakness (29.0%), and the second most frequent initial symptoms were dysphagia (17.0%) and diplopia (17.0%). Other symptoms were blepharoptosis (n = 4), facial weakness (n = 4), photophobia (n = 3), dysgeusia (n = 1), and psychic manifestation (n = 1). During their illnesses, 91.0% of the patients had hypoflexia or areflexia in the arms and 86.0% in the legs, 60.0% had superficial sense impairment (59.0% in the arms and 38.0% in the legs), 55.0% had external ophthalmoparesis, and 43.0% had ataxia. Predominant arm weakness was proximal in 47.0% and distal in 28.0%. Mild leg weakness (Medical Research Council scale score, 4) was present in 37.0%, and severe leg weakness (Medical Research Council scale score, ≤ 3) was present in 31.0%. Autonomic dysfunction occurred in 20.0%, including abnormal heart rate (n = 9) and blood pressure (n = 2), urination (n = 8) and defecation (n = 2) difficulties, orthostatic hypotension (n = 1), abnormal perspiration (n = 1), Horner syndrome (n = 1), and arrhythmia (n = 1). The median number of days to nadir was 7, and endotracheal intubation was used for 27.0% of the patients. Cerebrospinal fluid albuminocytological dissociation was present in 42.0%.

Diagnoses were pure PCB (n = 13), PCB with preserved MRS (n = 8), GBS overlap (n = 48), FS overlap (n = 26), and BBE overlap (n = 5) (Table 1). The sex ratio, days to nadir, age distribution, frequency of antecedent illness, and frequencies of endotracheal intubation and cerebrospinal fluid albuminocytological dissociation did not statistically significantly differ between patients with pure PCB and patients with the other conditions.
ANTECEDENT INFECTIONS

Serological evidence of recent *C. jejuni* (in 31.0% of patients) and cytomegalovirus (in 6.0% of patients) infections was statistically significantly more common in the patients with PCB than in the hospital control subjects (*P* < .001 and *P* = .04, respectively), whereas the differences among the other infections were statistically non-significant (Table 2). The frequency of recent *C. jejuni* infection was similar to that in patients with GBS (31.5%) but higher than that in patients with FS (20.5%). The frequency of recent *H. influenzae* infection was 1.0% in patients with PCB, which was similar to that in patients with GBS (2.7%) but was statistically significantly lower than that in patients with FS (8.2%) (*P* = .04).

Table 1. Clinical Profiles of Pharyngeal-Cervical-Brachial Weakness (PCB)\(^a\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N = 100)</th>
<th>Pure PCB (n = 13)</th>
<th>PCB With Preserved MRS (n = 8)</th>
<th>GBS Overlap (n = 48)</th>
<th>FS Overlap (n = 26)</th>
<th>BBE Overlap (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male to female sex ratio</td>
<td>56:44</td>
<td>8:5</td>
<td>2:6</td>
<td>32:16</td>
<td>13:13</td>
<td>1:4</td>
</tr>
<tr>
<td>Antecedent symptom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>71 (71.0)</td>
<td>9 (69.2)</td>
<td>5 (62.5)</td>
<td>36 (75.0)</td>
<td>18 (69.2)</td>
<td>3 (60.0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>30 (30.0)</td>
<td>3 (23.1)</td>
<td>2 (25.0)</td>
<td>17 (35.4)</td>
<td>6 (23.1)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Initial symptom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm weakness</td>
<td>29 (29.0)</td>
<td>4 (30.8)</td>
<td>1 (12.5)</td>
<td>22 (45.8)</td>
<td>1 (3.8)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>17 (17.0)</td>
<td>4 (30.8)</td>
<td>3 (37.5)</td>
<td>9 (18.8)</td>
<td>1 (3.8)</td>
<td>0</td>
</tr>
<tr>
<td>Diplopia</td>
<td>17 (17.0)</td>
<td>0</td>
<td>2 (25.0)</td>
<td>7 (14.6)</td>
<td>7 (26.9)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>Titubation</td>
<td>11 (11.0)</td>
<td>1 (7.7)</td>
<td>0</td>
<td>2 (4.2)</td>
<td>6 (23.1)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Nasal voice</td>
<td>7 (7.0)</td>
<td>4 (30.8)</td>
<td>0</td>
<td>0</td>
<td>3 (11.5)</td>
<td>0</td>
</tr>
<tr>
<td>Neurological sign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consciousness disturbance</td>
<td>5 (5.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (100.0)</td>
<td></td>
</tr>
<tr>
<td>External ophthalmoparesis</td>
<td>55 (55.0)</td>
<td>5 (38.5)</td>
<td>2 (25.0)</td>
<td>17 (35.4)</td>
<td>26 (100.0)</td>
<td>5 (100.0)</td>
</tr>
<tr>
<td>Internal ophthalmoparesis</td>
<td>20 (20.0)</td>
<td>1 (7.7)</td>
<td>1 (12.5)</td>
<td>6 (12.5)</td>
<td>9 (34.6)</td>
<td>3 (60.0)</td>
</tr>
<tr>
<td>Facial palsy</td>
<td>64 (64.0)</td>
<td>7 (53.8)</td>
<td>6 (75.0)</td>
<td>33 (68.8)</td>
<td>16 (61.5)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Predominance of arm weakness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>47 (47.0)</td>
<td>9 (69.2)</td>
<td>2 (25.0)</td>
<td>17 (35.4)</td>
<td>18 (69.2)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>Distal</td>
<td>28 (28.0)</td>
<td>4 (30.8)</td>
<td>4 (50.0)</td>
<td>15 (31.3)</td>
<td>5 (19.2)</td>
<td>0</td>
</tr>
<tr>
<td>Leg weakness</td>
<td>68 (68.0)</td>
<td>0</td>
<td>0</td>
<td>48 (100.0)</td>
<td>17 (65.4)</td>
<td>3 (60.0)</td>
</tr>
<tr>
<td>Hyporeflexia or areflexia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>91 (91.0)</td>
<td>13 (100.0)</td>
<td>0</td>
<td>48 (100.0)</td>
<td>26 (100.0)</td>
<td>4 (80.0)</td>
</tr>
<tr>
<td>Legs</td>
<td>86 (86.0)</td>
<td>10 (76.9)</td>
<td>3 (37.5)</td>
<td>44 (91.7)</td>
<td>25 (96.2)</td>
<td>4 (80.0)</td>
</tr>
<tr>
<td>Ataxia</td>
<td>43 (43.0)</td>
<td>1 (7.7)</td>
<td>1 (12.5)</td>
<td>10 (20.8)</td>
<td>26 (100.0)</td>
<td>5 (100.0)</td>
</tr>
<tr>
<td>Sense impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep</td>
<td>21 (21.0)</td>
<td>3 (23.1)</td>
<td>0</td>
<td>7 (14.6)</td>
<td>9 (34.6)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Superficial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>59 (59.0)</td>
<td>8 (61.5)</td>
<td>4 (50.0)</td>
<td>29 (60.4)</td>
<td>14 (53.8)</td>
<td>4 (80.0)</td>
</tr>
<tr>
<td>Legs</td>
<td>38 (38.0)</td>
<td>4 (30.8)</td>
<td>2 (25.0)</td>
<td>21 (43.8)</td>
<td>10 (38.5)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>Autonomic dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endotracheal intubation</td>
<td>27 (27.0)</td>
<td>5 (38.5)</td>
<td>1 (12.5)</td>
<td>15 (31.3)</td>
<td>5 (19.2)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>Cerebrospinal fluid albuminocytological dissociation</td>
<td>42 (42.0)</td>
<td>3 (23.1)</td>
<td>4 (50.0)</td>
<td>23 (47.9)</td>
<td>12 (46.2)</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: BBE, Bickerstaff brainstem encephalitis; FS, Fisher syndrome; GBS, Guillain-Barré syndrome; MRS, muscle stretch reflexes.

\(^a\)Data are given as number (percentage) unless otherwise indicated.

Table 2. Antecedent Infectious Serological Findings in Pharyngeal-Cervical-Brachial Weakness (PCB)\(^a\)

<table>
<thead>
<tr>
<th>Infection</th>
<th>PCB (n = 100)</th>
<th>GBS (n = 73)(^b)</th>
<th>FS (n = 73)(^b)</th>
<th>HC (n = 73)(^b)</th>
<th>PCB vs GBS</th>
<th>PCB vs FS</th>
<th>PCB vs HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>31 (31.0)</td>
<td>23 (31.5)</td>
<td>15 (20.5)</td>
<td>2 (2.7)</td>
<td>>.99</td>
<td>.16</td>
<td><.001</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>6 (6.0)</td>
<td>2 (2.7)</td>
<td>2 (2.7)</td>
<td>0</td>
<td>.47</td>
<td>.47</td>
<td>.04</td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td>4 (4.0)</td>
<td>1 (1.4)</td>
<td>1 (1.4)</td>
<td>4 (5.5)</td>
<td>.40</td>
<td>.40</td>
<td>.72</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>3 (3.0)</td>
<td>4 (5.5)</td>
<td>3 (4.1)</td>
<td>4 (5.5)</td>
<td>.46</td>
<td>.70</td>
<td>.46</td>
</tr>
<tr>
<td>Haemophilus influenza</td>
<td>1 (1.0)</td>
<td>2 (2.7)</td>
<td>6 (8.2)</td>
<td>0</td>
<td>.57</td>
<td>.04</td>
<td>>.99</td>
</tr>
</tbody>
</table>

Abbreviations: FS, Fisher syndrome; GBS, Guillain-Barré syndrome; HC, hospital control subjects.

\(^a\)Data are given as number (percentage) unless otherwise indicated.

\(^b\)From Koga et al.\(^8\)
weakness is not always proximally dominant in PCB. Based on diagnostic criteria by Ropper et al., the presence of diaphragm weakness, (almost) normal strength and tendon reflexes in the legs, and minimal or no sensory deficit is required. However, there was hip flexion weakness in patients 1 and 2 in the study by Ropper, and in patient 2 there was generalized areflexia. Diaphragm weakness was not noted in patient 3. Therefore, we believe that the presence of diaphragm weakness and normal leg tendon reflexes is not essential for the diagnosis of PCB. A bulbar variant of GBS has been proposed in which muscle weakness of the face, tongue, or deglutition at onset is noted. Frequent facial muscle involvement has been reported in patients with a lower cranial nerve form of GBS. However, only 4 of our patients with PCB initially experienced facial weakness, although 64 patients did so at a later stage. Therefore, facial weakness at onset is not an essential criterion for PCB.

During a 6-year period, we identified 100 patients with PCB. Diagnoses for these patients were pure PCB, PCB with preserved MRS, GBS overlap, FS overlap, and BBE overlap. Although referral bias may exist, the objective of this study was not to investigate each frequency but to clarify each relationship. The existence of PCB with overlapping FS and BBE provides clinical evidence that PCB and these conditions form a continuous spectrum. Cases of PCB with preserved MRS were previously reported, and it was proposed that this condition could be considered GBS in a broad sense based on a common pathogenesis. A patient with PCB with preserved MRS has been described, and we identify 8 similar cases herein. Except for hypoflexia or areflexia in the arms, the clinical features did not differ for pure PCB and PCB with preserved MRS, supporting evidence that PCB with preserved MRS can be considered GBS. In our study, patients with PCB-like symptoms who had leg weakness were assigned the diagnosis of GBS overlap for simplicity. All patients with GBS overlap showed weakness in the pharynx, neck, and arms at an early stage that eventually spread to the legs, and limb weakness predominated in the arms during the illnesses.

Upper respiratory tract infection preceded PCB more frequently than diarrhea, but serological studies demonstrated that C. jejuni is the most common antecedent infec-

Table 3. Antiganglioside IgG Antibodies in Pharyngeal-Cervical-Brachial Weakness (PCB)³

<table>
<thead>
<tr>
<th>IgG Antibody</th>
<th>Total (N = 100)</th>
<th>Pure PCB (n = 13)</th>
<th>PCB With Preserved MRS (n = 8)</th>
<th>GBS Overlap (n = 48)</th>
<th>FS Overlap (n = 26)</th>
<th>BBE Overlap (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1a</td>
<td>51 (51.0)</td>
<td>6 (46.2)</td>
<td>3 (37.5)</td>
<td>18 (37.5)</td>
<td>21 (80.8)</td>
<td>3 (60.0)</td>
</tr>
<tr>
<td>GQ1b</td>
<td>39 (39.0)</td>
<td>4 (30.8)</td>
<td>1 (12.5)</td>
<td>12 (25.0)</td>
<td>19 (73.1)</td>
<td>3 (60.0)</td>
</tr>
<tr>
<td>GM1</td>
<td>10 (10.0)</td>
<td>1 (7.7)</td>
<td>0</td>
<td>8 (16.7)</td>
<td>1 (3.8)</td>
<td>0</td>
</tr>
<tr>
<td>GM1b</td>
<td>16 (16.0)</td>
<td>1 (7.7)</td>
<td>0</td>
<td>11 (22.9)</td>
<td>3 (11.5)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>GD1a</td>
<td>12 (12.0)</td>
<td>1 (7.7)</td>
<td>1 (12.5)</td>
<td>8 (16.7)</td>
<td>1 (3.8)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>GalNAc-GD1a</td>
<td>1 (1.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (20.0)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td>GM1, GM1b, GD1a, or GalNAc-GD1a</td>
<td>27 (27.0)</td>
<td>2 (15.4)</td>
<td>1 (12.5)</td>
<td>18 (37.5)</td>
<td>4 (15.4)</td>
<td>2 (40.0)</td>
</tr>
</tbody>
</table>

Abbreviations: BBE, Bickerstaff brainstem encephalitis; FS, Fisher syndrome; GBS, Guillain-Barré syndrome; MRS, muscle stretch reflexes.

³Data are given as number (percentage).

An initial study of GBS by Ropper stressed the presence of shoulder weakness, but our large study shows that arm weakness is not always proximally dominant in PCB.
tious agent in PCB. Cytomegalovirus is the second most
common, and a patient with PCB who had antecedent up-
per respiratory illness and serological evidence of this in-
fec tion has been described.29 Antecedent infections did not
differ between PCB and GBS. Compared with the patients
with FS, the frequency of antecedent *H influenzae* in-
fec tion in the patients with PCB was lower, and that of ante-
cedent *C jejuni* infection was higher. In terms of anteced-
ent infectious agents, PCB was closer to GBS than to FS.

Investigators have focused on monospecific anti-GT1a
antibodies in PCB,3,4,10 but our findings indicate that anti-
GT1a antibodies with GQ1b reactivity frequently were pres-
ent. Our study also showed that 27.0% of the patients
with PCB had IgG antibodies to GM1, GM1b, GD1a, or GalNAc-
GD1a (serological markers of AMAN).9,11 This common
immunological profile indicates that PCB is related to
AMAN. Previously, 2 PCB cases associated with anti-
GM1b or anti-GD1a IgG antibodies were reported, and the
electrodiagnosis was AMAN.9 The antecedent illness of both
patients had been *C jejuni* enteritis. *Campylobacter jejuni*
strains from FS and GBS express GT1a-like and GD1a-
like lipo-oligosaccharides.3,8,12 After *C jejuni* infection, some
patients may develop anti-GT1a or anti-GD1a IgG anti-
bodies and PCB. The present study also showed that 39.0%
of the patients with PCB had anti-GQ1b IgG antibodies (a
serological marker of FS32 and BBE3), indicating that PCB
is related to FS and BBE.

In conclusion, this large study clarifies the clinical
profiles of patients with PCB. It identifies clinical over-
lapping, frequent *C jejuni* infection, and common anti-
ganglioside antibodies in PCB, GBS, FS, and BBE, pro-
viding conclusive evidence that they form a continuous
spectrum.

Accepted for Publication: February 6, 2007.
Correspondence: Nobuhiro Yuki, MD, PhD, Depart-
ment of Neurology and Research Institute for Neuroim-
munological Diseases, Dokkyo Medical University
School of Medicine, Kitakobayashi 880, Mibu, Shimotsuga, To-
chigi 321-0293, Japan (yuki@ dokkyomed.ac.jp).

Author Contributions: Study concept and design: Nagashima, Hirata, and Yuki. Acquisition of data: Nagashima. Analysis and interpretation of data: Na-
gashima, Koga, Odaka, and Yuki. Drafting of the manu-
script: Nagashima, Yuki, and Hirata. Critical revision of the
manuscript for important intellectual content: Odaka and
Hirata. Statistical analysis: Nagashima. Obtained fund-
ing: Hirata and Yuki. Administrative, technical, and ma-
terial support: Koga and Yuki. Study supervision: Odaka,
Hirata, and Yuki.

Financial Disclosure: None reported.

Funding/Support: This study was supported by a grant for
high-technology research from Dokkyo Medical Univer-
sity School of Medicine (Dr Hirata) and by a Neuroimmu-
nological Disease Research Committee grant from the Min-
istry of Health, Labor, and Welfare, Japan (Dr Yuki).

REFERENCES

1. Astbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain-

2. Fisher M. An unusual variant of acute idiopathic polyneuritis: syndrome of oph-

3. Yuki N, Sato S, Tsuji S, Hozumi I, Miyatake T. An immunologic abnormality com-
mong to Bickerstaff’s brain stem encephalitis and Fisher’s syndrome. *J Neurol

4. Ropper AH. Unusual clinical variants and signs in Guillain-Barré syndrome. *Arch

6. Miura Y, Susuki K, Yuki N, Ayate M, Shojo H. Guillain-Barré syndrome present-
ing pharyngeal-cervical-brachial weakness in the recovery phase [letter]. *Eur Neurol*

7. Jacobs BC, Rothbart PH, van der Meché FGA, et al. The spectrum of anteced-
51(4):1110-1115.

9. Arai M, Susuki K, Koga M. Axonal pharyngeal-cervical-brachial variant of Guillain-
246-250.

10. Ogawara K, Kuvabara S, Mori M, Hattori T, Koga M, Yuki N. Axonal Guillain-
Barré syndrome: relation to ganglioside antibodies and *Campylobacter jejuni*

11. Ogawara K, Kuvabara S, Koga M, Mori M, Yuki N, Hattori T. Anti-GM1b IgG an-
tibody is associated with acute motor axonal neuropathy and *Campylobacter jejuni*

12. Okuda B, Koga M, Katsuta T, Okamoto K, Yuki N. Fulminant Guillain-Barré syn-
drome after *Campylobacter jejuni* enteritis and monospecific anti-GT1a IgG antibody.

antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-
43(10):1911-1917.

patient with a pharyngeal-cervical-brachial variant of Guillain-Barré syndrome.

15. Koga M, Yuki N, Ariga T, Morimatsu M, Hirata K. Is IgG anti-GT1a antibody asso-
ciated with pharyngeal-cervical-brachial weakness or oropharyngeal palsy in

16. Kashihara K, Shiro Y, Koga M, Yuki N. IgG-anti-GT1a antibodies which do not
cross react with GQ1b ganglioside in a pharyngeal-cervical-brachial variant of
799.

17. Bickerstaff ER. Brain-stem encephalitis: further observations on a grave syn-

19. Yuki N, Tagaya Y, Irie F, Hirabayashi Y, Handa S. Close association of Guillain-
Barré syndrome with antibodies to minor monosialogangliosides GM1b and GM1α.
J Neurommunol. 1997;74(1-2):30-34.

20. Tagaya Y, Yuki N, Hirata K. High anti-GM1 and anti-GD1a IgG antibody titers
are detected in Guillain-Barré syndrome but not in chronic inflammatory demy-

21. Koga M, Yoshino H, Morimatsu M, Yuki N. Anti-GT1a IgG in Guillain-Barré syn-

23. van der Meché FGA, van Doorn PA, Meulstee J, Jennekens FGJ. Diagnostic and
123-129.

24. ter Bruggen JP, van der Meché FGA, de Jager AEJ, Polman CH. Ophthalmople-
gic and lower cranial nerve variants merge into each other and into classical Guillain-

25. Yuki N, Hirata K. Preserved tendon reflexes in *Campylobacter jejuni* neuropathy

brachial variant of Guillain-Barré syndrome after *Campylobacter jejuni* enteritis

doi:10.1086/499969.