The Fragile X Premutation Presenting as Essential Tremor

Maureen A. Leehey, MD; Renato P. Munhoz, MD; Anthony E. Lang, MD; James A. Brunberg, MD; Jim Grigsby, PhD; Claudia Greco, MD; Sebastian Jacquemont, MD; Flora Tassone, PhD; A. M. Lozano, MD, PhD; Paul J. Hagerman, MD, PhD; Randi J. Hagerman, MD

Context: The fragile X premutation has recently been reported to be associated with a neurodegenerative syndrome, chiefly characterized by intention tremor, gait ataxia, and executive cognitive deficits in men older than 50 years. Essential tremor is a frequent cause of tremor in elderly patients and in some cases is associated with impaired tandem gait and cognitive deficits.

Objective: To describe 2 fragile X carriers whose clinical presentation mimicked essential tremor.

Design: The 2 patients described herein underwent neurologic examinations by experienced movement disorders neurologists, magnetic resonance imaging, and fragile X gene, messenger RNA, and protein analyses. One underwent detailed neuropsychological testing.

Setting: Patients were studied at 2 large university movement disorders clinics.

Patients: Both patients were white men older than 50 years who had been diagnosed as having essential tremor and then found to be fragile X carriers.

Results: Besides disabling intention tremor, the 2 patients had impaired tandem, generalized brain atrophy, and unusual bilateral T2 middle cerebellar hyperintensities on magnetic resonance imaging. The patient who underwent neuropsychological testing had frontal executive deficits. Both patients had elevated fragile X mental retardation gene 1 messenger RNA and reduced fragile X mental retardation 1 protein levels.

Conclusion: The fragile X carrier state may underlie the clinical findings in some older men diagnosed as having essential tremor.

Arch Neurol. 2003;60:117-121
ian crease, motor delay, head banging, hand flapping, and mental retardation.

General physical examination findings were notable for normal blood pressure without abnormal orthostatic changes, round face without prominent ears, and borderline large testicular volume of 35 mL. He was cheerful and outgoing. His handwriting and drawing samples are shown in Figure 1. Cranial nerve findings were normal. He had a subtle, intermittent, “no” head tremor and a small-amplitude, slow, distal postural and intention tremor of the upper extremities (left greater than right). Tone was slightly reduced and rebound mildly increased in the upper extremities. Synergy, trajectory, and placement of upper- and lower-extremity movements were normal. Facial expression was animated, and he had normal speed and amplitude of movements. Muscular power and muscle stretch reflexes were normal, except the latter were absent at the ankles. Plantar responses were flexor. Vibration sense was reduced moderately in the distal upper extremities and markedly in the distal lower extremities. Position sense was mildly impaired in the left great toe. Gait and stance were normal. He could tandem only 3 or 4 steps without stepping out.

His Wechsler Adult Intelligence Scale III verbal IQ score was 112 and performance IQ, 106. He had particular difficulty with digit span skills (digit forward, 10; digit backward, 3). On the Behavioral Dyscontrol Scale, which is a 9-item, 19-point scale adapted from the work of Luria that measures the capacity to use intentions to regulate purposeful behavior, he was disinhibited on a go–no go task and impaired at motor procedural learning. The patient was tangential and sometimes had difficulty following directions or explanations. Overall, executive functioning was mildly to moderately impaired. Brain magnetic resonance images (MRIs) are shown in Figure 2.

Figure 1. Handwriting sample and Archimedes spiral drawing from patient 1. Patient 1 was asked to write and to connect the dots with his dominant hand, using a Clinical Tremor Rating Scale form developed by Fahn and colleagues.

Figure 2. Brain magnetic resonance images (MRIs) of patient 1. Axial T2-weighted MRIs. A, In the middle cerebellar peduncles and in white matter of the cerebellum lateral to the dentate nuclei, there is slightly increased T2 signal intensity. The pons appears normal. B, There is mild prominence in the size of the lateral ventricles and a mild prominence in the size of the sulci over the frontal and parietal cortex consistent with diffuse volume loss.
Fragile X testing showed a fragile X mental retardation 1 (FMR1) gene CGG repeat expansion of 90 and elevated messenger RNA (mRNA) at 2.38±0.19 (SEM) times normal.4 Fragile X mental retardation protein (FMRP) level5 was slightly reduced (H11350 72% FMRP lymphocytes).

PATIENT 2

A healthy, 63-year-old, right-handed former truck driver was diagnosed as having ET at age 49 years. By age 59 years, he was dependent on his wife to perform some activities of daily living. β-Blockers and primidone offered mild tremor reduction in the first weeks of treatment, but benefit waned and tremor severity progressed. An occasional glass of wine provided mild subjective improvement. His mother and brother had also been diagnosed as having ET. Childhood and adolescent development were normal.

Neurologic examination findings revealed an asymmetrical (right greater than left), high-amplitude, low-frequency postural and action tremor that affected the upper and lower extremities. There was no clear superimposed ataxia in the limbs, especially the legs, where it could be more reliably assessed. He had a low-amplitude, variable vector head tremor. Handwriting was large and illegible. Tone, strength, deep tendon reflexes, and sensation were normal. Gait and stance were normal, but there was marked instability in tandem gait.

In April 1998, the patient underwent implantation of bilateral Vim thalamic electrodes using microelectrode guidance. After surgery, his limb tremor had completely resolved due to a profound “microthalamotomy” effect, and therefore deep brain stimulators were not turned on. His head tremor also decreased significantly. However, immediately after surgery his balance worsened, resulting in repeated falls, especially when walking longer distances. His speech also became “slower.” In August 1998, his limb tremor recurred bilaterally. Electrophysiologic testing suggested malfunction of the left system due to an open circuit (ie, broken cable). On the right, suboptimal electrode placement was suggested by MRI and programming results. We decided not to operate again (ie, replace the left electrode or relocate the right) because of concern that his gait and speech might worsen further. His postoperative brain MRI is shown in Figure 3.

Finding that his grandson has fragile X syndrome, the patient underwent fragile X genetic testing. His FMR1 gene had 160 CGG repeats, FMR1 mRNA was elevated (5.5±0.50 times normal), and FMRP was reduced (H11350 61% lymphocytes).

COMMENT

Fragile X syndrome, the most common known cause of inherited mental retardation, results from expansion of a CGG trinucleotide repeat expansion in the 5' untranslated region of the FMR1 gene.6,7 Normally, FMR1 has 6 to 40 CGG repeats. Forty-one to 54 repeats is considered “gray zone,” and “premutation” carriers have 55 to 200 repeats. The full mutation, which involves more than 200 repeats, results in methylation and transcriptional silencing of the gene.8,9 The full mutation phenotype is variable; common manifestations include mental retardation, autism, hyperactivity, learning disabilities, and physical stigmata, such as long face, large ears, and macroorchidism.10 The severity of the cognitive deficit correlates inversely with the FMRP level.7 Males are more
affected than females, since females have a second X chromosome that produces FMRP.

Carrier frequencies are estimated to be 1 per 260 females and 1 per 760 males, although newer studies suggest that the frequencies may approach 1 per 100. Male carriers with alleles in the low premutation range (55-100 repeats) have FMR1 mRNA levels 2 to 4 times above normal, despite near-normal levels of FMRP; male carriers with 100 to 200 CGG repeats have mRNA levels 4 to 10 times normal, despite mildly reduced FMRP levels. Female carriers also have elevated mRNA levels. Premutation carriers have, until recently, generally been considered phenotypically normal. Some carriers show physical features of fragile X syndrome and/or mild emotional and cognitive problems.

The carrier state is also associated with symptoms not associated with the full mutation. Premature menopause occurs in approximately 20% of women, and some older men develop a tremor/ataxia syndrome, which is the focus of this article. This syndrome is characterized by progressively disabling intention tremor, cerebellar gait ataxia, erectile dysfunction, peripheral neuropathy, and parkinsonism. Evidence to date suggests that all develop cerebellar gait ataxia and cognitive disturbances. What fraction of male and female carriers develop this syndrome is unknown.

This syndrome has been previously given a variety of diagnostic labels, including ET, spinocerebellar ataxia, atypical parkinsonism, and olivopontocerebellar atrophy. Clinicians should consider testing for the fragile X premutation in patients with action tremor, progressive cerebellar gait ataxia, or parkinsonism with cerebellar features, especially if frontal executive deficits or middle cerebellar peduncle hyperintensities on T2-weighted MRI are present. We suggest consideration of this diagnostic possibility in patients thought to have ET who are considered to be candidates for neurosurgery and recommend a cautious evaluation of the risk-benefit ratio of surgery in individuals who carry the premutation.

Accepted for publication June 18, 2002.

Author contributions: Study concept and design (Drs Leehey, Lang, and P. Hagerman); acquisition of data (Drs Leehey, Munhoz, Lang, Grigsby, Greco, Tassone, Lozano, and R. Hagerman); analysis and interpretation of data (Drs Leehey, Brunberg, Greco, Jacquemont, and R. Hagerman); drafting of the manuscript (Drs Leehey, Munhoz, Lang, Brunberg, Greco, and P. Hagerman); critical revision of the manuscript for important intellectual content (Drs Munhoz, Lang, Brunberg, Grigsby, Greco, Jacquemont, Tassone, Lozano, R. Hagerman, and R. Hagerman); obtained funding (Drs Leehey and R. Hagerman); administrative, technical, and material support (Drs Munhoz, Lang, Brunberg, Grigsby, Greco, Jacquemont, Tassone, Lozano, and P. Hagerman); study supervision (Drs Lang and R. Hagerman).

This study was supported by grant HD36071 from the National Institute on Deafness and Other Communication Disorders, Bethesda, Md, grant M01 RR00069 from the General Clinical Research Centers Program, Denver, Colo; National Center for Research Resources, National Institutes of Health, Bethesda; and the M.I.N.D. Institute.

Corresponding author and reprints: Maureen A. Leehey, MD, Department of Neurology, University of Colorado Health Science Center, 4200 E Ninth Ave, Box B183, Denver, CO 80262 (e-mail: maureen.leehey@uchsc.edu).

REFERENCES

