Dementia and Delirium in 4 Patients With Machado-Joseph Disease

Atsushi Ishikawa, MD, PhD; Mitsunori Yamada, MD, PhD; Kunihiko Makino, MD; Izumi Aida, MD; Jiro Idezuka, MD, PhD; Takeshi Ikeuchi, MD, PhD; Yoshiaki Soma, MD, PhD; Hitoshi Takahashi, MD, PhD; Shoji Tsuji, MD, PhD

Background: Machado-Joseph disease (MJD; spinal-cerebellar ataxia type 3) is a hereditary neurodegenerative disease caused by mutation of the \textit{MJD1} gene. Patients with MJD usually present with cerebellar ataxia, external ophthalmoplegia, pyramidal and extrapyramidal signs, and muscle wasting. However, it has been reported that these patients do not demonstrate dementia.

Case Description: We noticed symptoms of dementia and delirium in 4 patients with MJD. The symptoms included abnormal behavior, excitement, an uncooperative attitude, crying, disorientation, slow thought processes, hallucinations, and delusions. These symptoms were observed in patients with a relatively young onset age, and after a long clinical course. In these patients, the CAG repeat length in the \textit{MJD1} gene was much longer compared with the mean repeat length found in patients with MJD. On electroencephalographical examination, they showed slow background activity, but computed tomography and magnetic resonance imaging scans showed no cerebrocortical atrophy. Neuropathological findings in 2 patients revealed a normal cortical structure on conventional morphological examination, but at immunohistochemical examination, we found abnormal staining by an antipolyglutamine antibody in the cerebrocortical neuronal nuclei.

Conclusions: Symptoms of dementia and delirium in patients with MJD could occur in the late stages, and they might be caused not by loss of cerebrocortical neurons, but by their dysfunction.

Arch Neurol. 2002;59:1804-1808

MACHADO-JOSEPH disease (MJD; spinal-cerebellar ataxia type 3) is the most common form of hereditary spinal-cerebellar degeneration in Japan,1 Germany,2 and the United States.3 The abnormal expansion of CAG repeats in the \textit{MJD1} gene on chromosome 14q32.1 has been identified as the causative mutation.4 The cardinal symptoms of MJD are cerebellar ataxia, external ophthalmoplegia, pyramidal signs, dystonia, rigidity, bradykinesia, fasciculation, and muscle wasting.5-9 The neuropathological findings of MJD consisted of degenerations in the substantia nigra, dentate nucleus, pontine nuclei, cranial nerve nuclei, spinal anterior horns, Clarke columns, globus pallidus, and subthalamic nucleus.6,10,11 With regard to mental activity in patients with MJD, it can be said to be preserved.8,9

We recently examined 4 patients with MJD revealing similar characteristic symptoms of dementia and delirium, and 2 of these patients had a neuropathological examination. Here we describe details of the dementia and delirium observed in the patients with MJD, brain computed tomography (CT) and magnetic resonance imaging (MRI) findings, electroencephalography (EEG) findings, and neuropathological findings.

In the affected regions of the MJD brain, we found intranuclear inclusions,12 similar to those in other polyglutamine diseases,13-15 that were due to elongated CAG repeats in the abnormal gene. Even in the cerebral cortex, which was reported as spared by conventional microscopic examination, immunohistochemical examination using antipolyglutamine antibodies of the MJD brain showed intranuclear stainings.16

We discuss the relevance of these mental symptoms in patients with MJD, and the mechanism causing these symptoms based on immunohistochemical examination of the MJD brain.

REPORT OF CASES

CASE 1

In 1976, a 26-year-old woman reported experiencing ataxic gait and a speech disturbance subsequently developed. In 1988, she was admitted to Niigata University Hospital, Kashiwazaki, Japan. Her mental state was normal (Wechsler Adult Intelligence Scale [WAIS] score: verbal IQ, 93; performance IQ, 74; and total IQ, 84). Ocular movement
was limited to upward motion, with horizontal gaze nystagmus. Muscle power was normal, but muscle atrophy and fasciculation were noted in her face and tongue. Limb and truncal ataxia were obvious. She could not walk without assistance. Dystonia was observed in her face and right big toe. Her tendon reflexes were exaggerated, and Babinski sign examination was positive. A brain MRI showed atrophy of the pons and cerebellum.

In March 1991, she was admitted to our hospital. Her mental state was still normal. Ocular movement was limited to lateral, in addition to upward directions. She was experiencing dysphagia and bradykinesia.

During November 1991, the patient cried at nighttime and had nightmares. In April 1993, she was noted on occasion to reject useful advice from the nurses. In July 1994, she was noted to speak loudly and become excited in the hallway at nighttime. At that time, her score on the revised version of the Hasegawa dementia scale (HDS-R; mental examination method commonly used in Japan with a scale up to 30) was 29 of 30. In February 1995, she was again observed speaking loudly, and rejecting advice from the nurses at nighttime, but the next day, she did not remember anything. From June to August, her psychotic state was labile. She would sometimes become excited, then cry or speak loudly and aggressively. She also repeatedly experienced delusional episodes. Doses of 100 mg of chlorpromazine had a mild effect on these symptoms. By 1999, her mental state had deteriorated, and she could not be examined using the WAIS. Her HDS-R score was 12 of 30. Background activity on EEG was 7 Hz. In 2000, her mental activity decreased, and it was difficult to evaluate her using the HDS-R scale. In the daytime, she was sleepy, exhibiting a slowing of the thought processes, and she sometimes cried. She died in October 2001 of sepsis following pyelonephritis. A year before her death, a brain MRI showed no evidence of neuronal intranuclear inclusions in the cerebral cortex, thalamus, and dentate nucleus—all of which are comparable with the neuropathological findings in those with MJD. On immunohistochemical examination using a monoclonal antibody (1C2), which recognizes specifically expanded polyglutamine stretches, labeling in the neuronal nuclei appeared as small inclusions with occasional staining of the nucleoplasm in a diffuse or finely granular pattern. Some neuronal nuclei showed only diffuse staining without obvious inclusion formation. Nuclear labeling was observed in the thalamus and in cerebrocortical layers V and VI (Figure, A), as well as in the affected central nervous system regions mentioned above. In the frontal lobe, nuclear pathological abnormalities appeared in approximately 0.6% of neurons, predominantly involving pyramidal cells. The CAG repeats of the patient's MJD1 gene were expanded to 77 and 19.

CASE 3

A 46-year-old woman reported difficulty in standing up at age 16 years in 1970, and her gait subsequently became unstable. In May 1993, she was admitted to our hospital. Her mental state was normal (HDS-R score, 28/30). She had a limitation of ocular movement in all directions; horizontal gaze nystagmus; dysphagia; dysarthria; muscle atrophy and limb weakness; dystonia in the forehead, fingers, and big toes; ataxia in the limbs and trunk; hyperreflexia; Babinski sign; and urinary disturbance. A brain MRI showed atrophy of the pons and cerebellum. In 1994, her verbal IQ on WAIS was mildly decreased to 67.

In August 1996, she frequently requested unnecessary support from the nurses. In October, she sometimes became excited and cried out loudly. In August 1998, she frequently cried, and showed slowing of the thought process. Chlorpromazine (as much as 375 mg) had a mild effect. She died in February 2000 of a respiratory infection.

Neuropathological findings showed typical neuronal degeneration compatible with that seen in patients with MJD. Neuronal intranuclear inclusions in the cerebral cortex, thalamus, and microscopically affected central nervous system regions, were stained with antipolyglutamine antibody. Although the distribution pattern of polyglutamine accumulation in the neuronal nuclei was similar to that of the patient in case 2, the accumulation appeared (in addition to aggregate form) as a diffuse pattern in the neuronal nuclei (Figure, B), and extended to more neurons (about 4.2% of neurons in the frontal lobe), including small neurons in the cerebrocortical layers V and VI.

Her mother, grandmother, 2 uncles, 2 aunts, and 1 cousin had the same disease. The CAG repeats of her MJD1 gene were expanded to 75 and 14.

CASE 4

A 51-year-old man complained of gait disturbance at age 36 years in 1983. Thereafter, he noticed speech disturbance, and later, urinary disturbance. In April 1992, he was...
admitted to our hospital. His mental state was normal (HDS score; 32.5/32.5). He had upward gaze limitation, horizontal gaze nystagmus, dysphagia, and dysarthria. Fasciculation was found in his face. His muscle tone was hypotonic. Limb and truncal ataxia was found, and walking was possible only with assistance. Deep tendon reflexes were exaggerated, and examination for Babinski sign was positive bilaterally.

In August 1996, he was readmitted to our hospital. His mental activity was still normal (HDS-R score; 29/30). Ocular movement was limited in all directions. He developed bradykinesia, dystonia in his face and in both big toes, and urinary disturbance. He was unable to walk. A brain MRI revealed atrophic findings in the brainstem and cerebellum.

In November 1996, he began to feel disoriented in his room at night, and on another occasion at night, he left the hospital. The next day, he did not remember what had happened. The following month, he insisted that he had to visit a family member in another hospital at nighttime. In January 1997, he set off a foam extinguisher in a ward, also at nighttime. He also repeatedly turned lights on and off and stripped himself of his clothes at night. After being discharged from our hospital, he died in a nursing home in November 1998 of a respiratory infection.

His younger brother, father, and 1 uncle had the same disease. The CAG repeats of his MJD1 gene were expanded to 74 and 25.

COMMENT

In reports describing the clinical symptoms of MJD, the mental state has been considered normal, and dementia has not been mentioned. Recently, a few reports suggesting the presence of dementia in patients with MJD have been published. In a review of MJD in 1993, Sequeiros and Coutinho noted 2 patients with memory disturbance, and many patients with sleep disturbance, which was sometimes associated with nocturnal crying, agitation, and nightmares. In 1993, Fukutani et al reported 3 patients experiencing delirium. They noted nocturnal delirium and a slowing of background activity on EEG. They speculated that brainstem lesions (eg, reticular formation, raphe nuclei, and locus ceruleus) induced a delirious state from the neuropathological findings of 2 patients. In 1997, Maruyama et al reported cases of 10 patients with dementia among 108 patients with MJD. In 1998, Løkkegaard et al reported 3 patients with dementia among 23 patients with MJD. One had disturbance of memorizing, storing, and evoking verbal materials. As for examination of cognitive function, Maruff et al reported specific cognitive deficit in visual attentional function in the MJD patients. They insisted that this symptom occurred without the presence of dementia.

The molecular diagnosis of MJD was confirmed for all of our patients by analyzing CAG repeats of the MJD1 gene. The common features of our 4 patients were relatively young onset age (16-36 years), long latency to the occurrence of dementia and delirium (13-25 years), and much longer CAG repeat lengths (74-79) (Table 1). They all had normal mental activity in the early stages. Their dementia and delirium began after age 40 years. Initial abnormal episodes in daily living included crying in 2 patients, and delusion and disorientation in 1 patient. In all patients, abnormal episodes often occurred during as short a time as a few hours or half of a day, especially at night. After these symptoms disappeared, their mental and consciousness levels returned to normal, suggesting a delirious state. In a short time, disturbance of mental activity developed, including slowness of thought, and mental test scores began to decrease. Interestingly, the symptoms of dementia and delirium in our 4 patients were
very similar (e.g., abnormal behavior, excitation, uncooperative attitude, crying, disorientation, slow thought processes, hallucinations, and delusions) (Table 2). For the treatment of delirium in these MJD patients, low doses of chlorpromazine proved mildly effective.

Hitherto, neuroradiological examinations such as CT and MRI scans did not elucidate cerebrocortical atrophy in patients with MJD. None of our 4 patients showed cerebrocortical atrophy on CT or MRI scans even after the appearance of dementia and delirium symptoms. On the other hand, Kitamura et al noted frontal cortical atrophy, and Murata et al showed frontal and temporal cortical atrophy in the patients with MJD. Using single-photon emission CT, Etchebehere et al showed low perfusion in the frontal lobe, in the lateral portion of the temporal lobe, and in the parietal lobe. Recently, by means of a positron emission tomography study, Soong et al revealed hypometabolism in the occipital cortex, and Taniwaki et al showed diffuse hypometabolism of the cerebral cortices in patients with MJD. Slow background activity on EEG was reported in patients with MJD having dementia and delirium, and it was also observed in all 4 of our patients (Table 1). These reports suggest dysfunction of the cerebral cortices and the possibility of cerebrocortical atrophy in patients with advanced MJD.

On the other hand, neuropathological examination did not suggest atrophy or neuronal loss in the cerebral cortex, even in patients with dementia. In 2 of our patients, the cortical structures also showed normal findings by macroscopic and microscopic examination.

Recently, similar to other polyglutamine diseases caused by elongated CAG repeats in abnormal genes, neuronal intranuclear inclusions in the affected regions of the MJD patients were reported. By immunohistochemical examination using an antipolyglutamine antibody in patients with MJD (including our patient 2), Yamada et al identified abnormal staining in many neurons of the cerebral cortex, thalamus, the nucleus basalis of Meynert, and autonomic ganglia that had been reported as usually spared by conventional microscopic examination. Conventional microscopic examination did not reveal cortical neuronal loss or gliosis in these patients. Abnormal staining by antipolyglutamine antibody showed intranuclear inclusions, and sometimes intranuclear fine granular or diffuse staining. Neuronal intranuclear inclusions stained by antipolyglutamine antibody were shown in pyramidal neurons in the frontal, temporal, parietal, and occipital cortices of cortical layers III, V, and VI. There were no significant differences in the distribution pattern and frequency of the staining between these cortices. Patients with longer CAG repeats tended to have higher numbers of labeled neurons.

In this study, patients with longer CAG repeats in the MJD1 gene manifested a tendency toward dementia and delirium, and immunohistochemical studies of patient brains with longer CAG repeats showed many more neu-

Table 1. Summary of Clinical Background and Examination Results in 4 Patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patient No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y/sex</td>
<td>51/F</td>
<td>46/M</td>
<td>46/F</td>
<td>51/M</td>
<td></td>
</tr>
<tr>
<td>Age at onset, y</td>
<td>26</td>
<td>27</td>
<td>16</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Duration to occurrence of dementia and delirium, y</td>
<td>14</td>
<td>16</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Age at occurrence of dementia and delirium, y</td>
<td>40</td>
<td>43</td>
<td>41</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Brain CT/MRI</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Atrophy of pons and cerebellum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophy of cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAG repeat length in MJD1†</td>
<td></td>
<td>79/14</td>
<td>77/19</td>
<td>75/14</td>
<td>74/25</td>
</tr>
<tr>
<td>Neuropathologic examination</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Antipolyglutamine antibody in cerebral cortical neuronal nuclei</td>
<td>...</td>
<td>+</td>
<td>+</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

* HDS-R indicates Hasegawa Dementia Scale—Revised; CT, computed tomography; MRI, magnetic resonance imaging; EEG, electroencephalography; pluses and minuses, the presence or absence, respectively, of a given characteristic; and ellipses, not applicable.
† Abnormal repeat length, 56-84.

Table 2. Details of Delirium and Dementia in 4 Patients

<table>
<thead>
<tr>
<th>Characteristic/Behavior</th>
<th>Patient No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal behaviors</td>
<td></td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Undressing oneself</td>
<td></td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Leaving hospital</td>
<td></td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Playing with stool</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Excitation</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Uncooperative attitude</td>
<td></td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Crying</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Disorientation</td>
<td></td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Slowness of thought</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Hallucination</td>
<td></td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Delusion</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Pluses and minuses indicate the presence or absence, respectively, of a given characteristic or behavior.
ronal nuclei stained by antipolyglutamine antibody.16 Schi
ling et al20 showed that transgenic mice of a dentatorubral-
pallidolysian atrophy model having neuronal intranuclear
inclusions and stainings similar to those of the patients
with MJD without neuronal degeneration developed the
neurological phenotype of dentatorubral-pallidolysian
atrophy, suggesting dysfunction of the cortical neu-
rons in mice with dentatorubral-pallidolysian atrophy.
Although the precise mechanism is unknown, the exis-
tence of cortical neuronal intranuclear inclusions and
a fine granular or diffuse pattern stained by antipolyglu-
tamine antibodies suggests dysfunction of these neurons,
notwithstanding the absence of morphological change by
conventional microscopic examination.
In our patients in cases 2 and 3 and in a previous study,16
neuronal intranuclear inclusions stained by antipolyglu-
tamine antibody were identified in the cerebrocortical lay-
ers V and VI, and occasionally III (Figure). On the other
hand, in patients with dementia with Lewy bodies (DLB),
cortical Lewy bodies are also found in the cerebral cortical
layers V and VI, and occasionally III, especially in the in-
sular, anterior cingulate, and temporal cortices. In these
cortices, we sometimes find neuronal degeneration and spong
y change, and degeneration of the nucleus basalis of Mey-
ner also usually occurs.28 The clinical findings of fluctu-
ating cognition, visual hallucinations, and delusions are of-
xamined dementia and delirium after a long latent period.
Accepted for publication June 18, 2002.

Author contributions: Study concept and design (Drs Ishikawa, Yamada, Soma, Takahashi, and Tsuji); acquisition of data (Drs Yamada, Makino, Aida, Idezuka, and Ikeuchi); analysis and interpretation of data (Dr Yamada); drafting of the manuscript (Drs Ishikawa and Tsuji); critical revision of the manuscript for important intellec-
tual content (Dr Tsuji); statistical expertise (Dr Tsuji); ob-
tained funding (Drs Ishikawa, Yamada, and Takahashi); administra-
tive, technical, and material support (Drs Yamada and Takahashi); study supervision (Drs Ishikawa, Yamada, Soma, Takahashi, and Tsuji).

This study was partly supported by grant 12A-1 for Nervous and Mental Disorders and a grant for the Re-
search Committee for Ataxic Disorders from the Ministry of Health, Labor and Welfare, Tokyo, Japan, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo.

Corresponding author: Atsushi Ishikawa, MD, Department of Neurology, Niigata National Hospital, Akasaka 3-52, Kashiwazaki 945-8585, Japan (e-mail: isikawa@niigata.hosp.go.jp).

REFERENCES

1. Takano H, Cancel G, Ikeuchi T, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequ-
5. Nakano KK, Dawson DM, Spence A. Machado disease: a hereditary ataxia in Por-
6. Woods BT, Schaumburg HH. Niño-spiro-dental degeneration with nuclear oph-
thalmo-plasia: a unique and partially treatable clinico-pathological entity. J Neu-
7. Rosenberg RN, Nyhan WL, Bay C, Shore P. Autosomal dominant striatonigral
degeneration: a clinical, pathologic, and biochemical study of a new genetic dis-
8. Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease:
glutamine in a spinocerebellar ataxia type 3. Neuron. 1997;19:333-
344.
13. Difiglia M, Sapp E, Chase KO, et al. Aggregation of Huntington in neuronal in-
nuclear inclusions and dystrophic neurites in brain. Science. 1997;277:1980-
1993.
phy: detection of widespread ubiquitinated neuronal and glial intranuclear in-
101:140-144.
56:1207-1212.
18. Maruyama H, Kawakami H, Kohriyama T, et al. CAG repeat length and disease
1997;152:166-171.
21. Takajima Y, Ikemoto S, Tanaka Y, Mizoza Y, Yoshida M, Yasuda N. A large Japa-
nese family with Machado-Joseph disease: clinical and genetic studies. Acta Neu-
23. Murata Y, Yamaguchi S, Kawa-
gham H, et al. Characteristic magnetic resonance imaging findings in Machado-
tion computed tomography and magnetic resonance imaging in Machado-
27. Schilling G, Wood JD, Duan K, et al. Nuclear accumulation of truncated atrophin-1
28. Gibb WRG, Esiri MM, Lees AJ. Clinical and pathological features of diffuse cor-
29. McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and
pathologic diagnosis of dementia with Lewy bodies (DLB); report of the consor-