RESEARCH LETTER

Two Faces of the Same Coin: Benign Familial Infantile Seizures and Paroxysmal Kinesigenic Dyskinesia Caused by PRRT2 Mutations

Shuzo Kure, the first to describe paroxysmal kinesigenic dyskinesia (PKD) in a Japanese journal in 1892,1 would have been pleased to learn that the gene for this condition has now been identified.2,3 Paroxysmal kinesigenic dyskinesia is the most common paroxysmal movement disorder, presenting with brief episodes of dystonic, choreatic, or ballistic, and sometimes bizarre, involuntary movements triggered by sudden movement with onset in childhood or adolescence.4 Owing to its unusual semiology, PKD is often misdiagnosed as a psychogenic disorder. However, it is easily treatable with low doses of anticonvulsants.5 Notably, PKD has been clinically and genetically linked to a variety of heterogeneous and, at first sight, unrelated conditions. This includes benign familial infantile seizures (BFIS); the syndrome of rolandic epilepsy, paroxysmal exercise–induced dyskinesia, and writer’s cramp; and even the trait of wet ear wax (cerumen).1,4 Indeed, PKD, ictal and interictal changes are typically absent on electroencephalogram.1,4 However, the confirmation that PKD and BFIS can have a shared genetic cause lends support to the concept that the pathophysiological mechanism underlying PKD may be subcortical epileptogenic discharges, possibly originating from the basal ganglia. The molecular pathway may involve synaptic regulation via interactions with the SNAP25 protein, ultimately leading to neuronal hyperexcitability.6

There has been debate about whether paroxysmal dyskinesia have an epileptic origin.1,7 It is notable that in PKD, ictal and interictal changes are typically absent on electroencephalogram.1,4 However, the confirmation that PKD and BFIS can have a shared genetic cause lends support to the concept that the pathophysiological mechanism underlying PKD may be subcortical epileptogenic discharges, possibly originating from the basal ganglia. The molecular pathway may involve synaptic regulation via interactions with the SNAP25 protein, ultimately leading to neuronal hyperexcitability.8

These findings are of interest to a broad range of clinicians who may encounter patients presenting with infantile convulsions or PKD. Paroxysmal kinesigenic dyskinesia should be suspected in families with a child with BFIS and vice versa. There is now evidence to suggest that a simple genetic test (sequencing of the small PRRT2 gene) may replace laborious and expensive diagnostic investigations in these patients. The finding of PRRT2 mutations in families with isolated BFIS without co-occurring PKD has been a recent development, further expanding the phenotypic spectrum.7

Accepted for Publication: February 1, 2012.

Author Affiliations: Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, (Drs Schmidt, Kumar, Redyk, Grunewald, Hagenah, Lohmann, and Klein), Children’s...
Figure. Pedigrees of families with benign familial infantile seizures (BFIS) and paroxysmal kinesigenic dyskinesia (PKD) in families of German origin (A, B, and D) and Turkish-Russian descent (C). Examples of electropherograms illustrating the heterozygous c.649dupC mutation (m) in 1 patient with isolated BFIS and 1 with PKD are given in the inserts. As comparison, a wild-type sequence (w) of a control individual is shown. Circles indicate females; squares, males; and dot mark, an unaffected carrier. The mutant allele is indicated by a line adjacent to the haplotype. Patients with an L-code have been genetically tested and neurologically examined. In patients with an L-code, diagnosis was based on history by family members. The following items are listed directly beneath each L-code: age at onset for BFIS (months)/age at onset for PKD (years)/current age (years).

Hospital, Salzgitter (Drs Redyk and Leben), Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Münchau); Clinic for Pediatric Kidney, Liver, and Metabolic Diseases, Hanover Medical School, (Dr Hartmann) and Children's Hospital Auf der Bult, Hanover (Dr Christen), Germany; and
Insulin and Alzheimer Disease

The article by Craft et al demonstrating that intranasal insulin improves cognitive function and fluodeoxyglucose F 18 uptake in specific regions of the brain in patients with mild cognitive impairment and Alzheimer disease (AD) is a landmark study. For the first time, the previous data that AD is both a reflection and Alzheimer disease (AD) is a landmark study. For the first time, the data are consistent with the fact that AD is a chronic inflammatory disease and that insulin exerts a potent anti-inflammatory effect.

More recently, it has also been shown that insulin suppresses the expression of genes related to AD: amyloid precursor protein, presenilins 1 and 2, and glycogen synthase kinase-3β in peripheral blood mononuclear cells. These actions could potentially limit the formation of β-amyloid and the intracellular neurofibrillary tangles. While these observations were not made in neurons, they were obtained in humans in vivo with doses and concentrations of insulin that are therapeutically relevant. It is possible that intranasally administered insulin achieves sufficiently high intracerebral concentrations of insulin to suppress the expression of the genes just mentioned.

In this context, it is also relevant that the amyloid precursor protein has recently been shown to be expressed in vascular tissue where it may, along with β-amyloid, exert pro-inflammatory and potential pro-atherogenic effects. Thus, the effects of insulin are relevant both at the cerebral and vascular levels.

Clearly, larger long-term studies are required to establish the use of intranasal insulin in the treatment of AD. Additionally, specific biomarkers are readily obtainable samples and easy to measure, and those that are highly responsive to therapy are clearly needed. However, it is clear that a door has been opened for the rational treatment of this hitherto almost untreatable disease with a drug that has practically no adverse effects other than hypoglycemia. This effect can be avoided by its intranasal...