Encephalitis Associated With Glutamic Acid Decarboxylase Autoantibodies in a Child

A Treatable Condition?

Christian M. Korff, MD; Paloma Parvex, MD; Laurent Cimasoni, MD; Alexandra Wilhelm-Bals, MD; Christiane S. Hampe, PhD; Valerie M. Schützegel, MD; Melanie Michel, PhD; Claire-Anne Siegrist, MD; Patrice H. Lalive, MD; Margitta Seeck, MD

Objective: To increase the recognition of glutamic acid decarboxylase autoantibodies–related encephalitis in childhood.

Design: Case report and review of the literature.

Patient: A 6-year-old girl who had developed refractory seizures, developmental regression, and type 1 diabetes mellitus at age 25 months.

Interventions: Blood analysis, electroencephalogram, cerebral magnetic resonance imaging, positron emission tomography scan, lumbar puncture, and measurement of glutamic acid decarboxylase activity were performed. Treatment with repeated plasmapheresis and rituximab, with concomitant antiepileptic drugs, was administered.

Results: Highly elevated titers of glutamic acid decarboxylase autoantibodies were found in the serum, as well as in the cerebrospinal fluid. Major clinical improvement in parallel with a decrease in the levels of serum and cerebrospinal fluid antibodies was observed with treatment.

Conclusions: Encephalitis associated with glutamic acid decarboxylase autoantibodies is a severe epileptic disorder that occurs in young children as well as adults. It may be partially reversible with aggressive immunomodulatory treatment, including plasmapheresis and rituximab. Studies are warranted to determine whether early treatment leads to complete remission.

Arch Neurol. 2011;68(8):1065-1068

Glutamic acid decarboxylase (GAD) is an enzyme implicated in the anabolism of γ-aminobutyric acid (GABA), which is one of the most important inhibitory neurotransmitters. This enzyme is expressed in GABAergic neurons as well as in pancreatic β cells. In addition to their role in type 1 diabetes mellitus (T1DM), GAD autoantibodies (GADAs) are associated with various neurologic conditions, such as stiff person syndrome, cerebellar ataxia, limbic encephalitis, myasthenia gravis, and epilepsy, described mainly in adults. There are rare observations in children, without long-term follow-up. We report the case of a 6-year-old patient who had developed refractory epilepsy, developmental regression, and T1DM, in association with elevated plasma and cerebrospinal fluid (CSF) GADAs, at age 25 months and describe her significant improvement after treatment.

REPORT OF A CASE

This 6-year-old girl was born at term after an unremarkable pregnancy. Early developmental milestones were attained without delay. At 25 months, the patient progressively developed 20 to 30 focal seizures per day (behavioral arrest, fearful gaze, eye and head version, and tachycardia), with frequent secondary generalization. These were refractory to treatment with 10 antiepileptic drugs, the ketogenic diet, intravenous immunoglobulins, thiamine hydrochloride, pyridoxine hydrochloride, and coenzyme Q10. From the age of 30 months, progressive development of drooling, gait instability, muscular weakness, and lack of interest in the environment was noted. An extensive diagnostic workup was conducted before the child was referred to our center. Laboratory analyses included normal lactate to pyruvate ratios and negative routine blood test results for metabolic diseases, unremarkable electroneuromyographic find-
Highly elevated serum levels of GADAs were present (highest value, 3400 IU/mL; reference, <10 IU/mL). Additional autoantibodies linked with various types of encephalopathies were not analyzed. When the child was 6½ years old, a spinal tap was performed. In addition to blood-brain barrier dysfunction, the CSF samples showed high levels of GADAs (13 U/mL; reference, <1 U/mL), type 2 oligoclonal bands, and an elevated CSF to serum GADA immunoglobulin G ratio (11; reference, <1.5), suggestive of specific intrathecal GADA synthesis.

A 5-day course of intravenous methylprednisolone, 23 mg/kg/d, was initiated; no effect was observed on seizure frequency, EEG abnormalities, or neurologic symptoms. Consequently, while the child was receiving treatment with oral prednisone, 1 mg/kg/d, started immediately after the intravenous treatment, we used plasmapheresis (1 exchange/d during 5 consecutive days, followed by 3 exchanges/wk for 1 wk, 2 exchanges/wk for 4 wks, and then 1 exchange/wk).

A dramatic decrease in the serum GADA level was observed 2 weeks after the first plasmapheresis. These low levels were maintained (<300 IU/mL) with a combination of oral prednisone and 2 plasmapheresis sessions per week (Figure 2). Increased weakness and seizure frequency occurred after the frequency of plasmapheresis was reduced to once per week 6 weeks after its initiation; this increase was accompanied by an elevation in GADA levels during a 2-month period (highest value, 460 IU/mL). Because of decompensated T1DM and weight gain, prednisone therapy was stopped and immunomodulatory drugs were introduced 3 weeks after initiation of plasmapheresis. Treatment with mycophenolate mofetil, 600 mg/m² twice a day, did not yield any clinical improvement. However, a continuous drop in serum GADA levels was noted in parallel with the use of rituximab (given as 2 doses of 375 mg/m², with a 1-week interval, and 2 doses 4 months later). In parallel, with concomitant clobazam (up to 0.8 mg/kg/d) and stiripentol (up to 30 mg/kg/d), progressive reduction in the frequency and severity of seizures was observed. Twelve months after initiation of plasmapheresis, the CSF GADA level had dropped to 1.8 U/mL; our patient had an average of 2 to 4 complex partial seizures per day and 1 to 3 short (<60 seconds) tonic seizures per week, and the EEG abnormalities had markedly diminished (Figure 2B). The child ate without assistance, colored with more precision, played symbolic games, and used a richer vocabulary. At 8 years, her gait was normal and the weakness had disappeared. She was able to use short sentences and to understand her parents’ speech. Her serum glucose concentration was controlled with subcutaneous insulin therapy.

The hemoglobin A₁c level decreased progressively, from 5.7% to 4.9%. There was no further progression of cerebral atrophy shown on magnetic resonance imaging performed 1 year after initiation of plasmapheresis (Figure 1).

Glutamic acid decarboxylase autoantibodies epitope-specific recognition was determined, and enzyme activity inhibition was measured in blood and CSF samples before and 1 year after the start of plasmapheresis and immunomodulatory therapy. The antibodies were GAD65-specific and showed no reactivity to GAD67. The enzyme activity inhibition in the serum samples was reduced from 64% before treatment to 36% after treat-

Figure 1. A, Cerebral magnetic resonance imaging (MRI) with axial T2 sequences at age 5 years, showing cortical and subcortical atrophy. B, Cerebral MRI with axial T2 sequences at age 7 years, 6 months after initiation of plasmapheresis treatment, showing the progression of global cortical-subcortical atrophy. C, Cerebral MRI with axial T2 sequences at age 7½ years, 1 year after initiation of plasmapheresis treatment, showing stabilization of the atrophy in comparison with that at age 7 years. D, Cerebral positron emission tomography scan, axial slice, showing diffuse cortical hypometabolism (orange).
The 2 previous reports on GADA-related encephalopathy in children suggest that this potentially treatable entity is insufficiently recognized in this age group. A correlation between clinical improvement and a decrease in plasma GADA titers was noted in one of these children. The second child returned to his normal state 3 months after disease onset, despite persistently high values of plasma GADAs, whereas our patient, although showing marked improvement, still experiences seizures and cognitive impairment despite significantly decreased levels of GADAs.

The mechanisms by which the circulating antibodies interact with GAD, an intracellular enzyme, are still debated. Some argue that the presence of GADAs indicates a nonspecific generalized immune process; for example, these antibodies are present in 60% of all isolated cases of T1DM. However, GABA synaptic transmission impairment due to GADAs was demonstrated in vitro, and low cortical GABA levels were recently reported in patients with high levels of serum GADAs. In addition, serum GADA levels are usually higher in neurologic diseases than in the typical isolated cases of T1DM. Glutamic acid decarboxylase autoantibodies related to neurologic conditions also seem to be qualitatively different from those involved in T1DM, as indicated by lack of staining of cerebellar granular neurons by GADAs from the serum of patients with uncomplicated T1DM. Moreover, the characteristic inhibition of GAD enzyme activity is not observed for GADAs in T1DM. Finally, GADAs in neurologic diseases often recognize GAD epitopes that differ from those bound by GADAs in T1DM (eg, recognition of the β78 epitope is rare among patients with T1DM). Glutamic acid decarboxylase–specific monoclonal antibody b78 inhibits GAD enzyme activity, b96.11 does not. We found that, prior to treatment, our patient’s GADAs recognized epitopes associated with T1DM (b96.11) and neurologic diseases (b78). After treatment, however, the T1DM-related antibody specificity remained and the epitope related to neurologic diseases was no longer recognized.

Encephalopathy associated with GADAs may be reversible with immunotherapy. Plasmapheresis was the most effective treatment in decreasing GADA levels in our patient, whereas intravenous immunoglobulin and intravenous and oral corticosteroids had no effect on GADA levels or seizure frequency. In a recent review of 53 patients (aged 17-80 years) with epilepsy and GADAs, treatment with intravenous immunoglobulin, corticosteroids, or cyclophosphamide did not improve seizure control. The use of rituximab may have been effective in our patient and may be of interest in treatment of autoimmune neurologic diseases. This anti-CD20 monoclonal antibody causes selective destruction of B lymphocytes and decreased production of antibodies. Interestingly, rituximab has been recently demonstrated to partially preserve β-cell function when used at the onset of T1DM.

The reason for our patient’s improvement remains unclear. For instance, time may have contributed to the de-
creases of GADA levels in the CSF, and additional auto-

antibodies, not analyzed in our patient but recently

reported11 as causing various types of encephalopathies,

may have been influenced by our therapeutic approach.

In addition, stiripentol and clobazam act on the GABA-

ergic system and may have influenced seizure control.

However, the rapid decrease of seizures and improve-

ment in behavior that paralleled the decrease and stabi-

lization of GADA levels during plasmapheresis and im-

munomodulating therapy was dramatic in our patient.

Our observations, as well as those from other recent re-

ports,12-16 support the presence of a causal effect of GA-

DAs in this form of encephalitis; this remains to be veri-

fied. Multicenter prospective studies may determine

whether earlier treatment with plasmapheresis and ri-

tuximab allows an even better outcome than that achieved

with our patient.

Accepted for Publication: February 14, 2011.

Author Affiliations: Pediatric Neurology (Dr Korff) and

Pediatric Nephrology (Drs Parvex, Cimasoni, and

Wilhelm-Bals), Pediatric Specialties Service, Pediatric Endo-

crinology and Diabetology, Development and Growth

Service (Dr Schwartzgebl), Immuno-Vaccinio Unit,

General Paediatrics Service (Dr Siegier), Child and Ado-

lescent Department, Neuropsychology Unit (Dr Michel) and

Electroencephalogram and Epileptology Unit

(Dr Seeck), Neurology Service, Clinical Neurosciences

Department, Laboratory Medicine Service, Department of

Genetics and Laboratory Medicine (Dr Siegier), and

Laboratory of Neuroimmunology, Division of Neuro-

logy, Department of Clinical Neurosciences (Dr Lalive),

University Hospital of Geneva, Geneva, Switzerland; and

Department of Medicine, University of Washington, Seattle (Dr Hampe).

Correspondence: Christian M. Korff, MD, Pediatric Neu-

rology, Pediatric Specialties Service, Child and Adoles-

cent Department, University Hospital of Geneva, 6 Rue

Willy-Donzé, CH-1211 Geneva 14, Switzerland (christian.
korff@hcuge.ch).

Author Contributions: Dr Korff had full access to all the

data in the study and takes responsibility for the integ-
rity of the data and the accuracy of the data analysis.

Study concept and design: Korff and Siegier.

Acquisition of data: Korff, Parvex, Wilhelm-Bals, Hampe,

Schwitzgebel, Michel, and Lalive. Analysis and interpreta-

tion of data: Korff, Parvex, Cimasoni, Hampe, Schwitzgebel, Siegier, Lalive, and Seeck.

Drafting of the manuscript: Korff, Cimasoni, and Wilhelm-Bals.

Critical revision of the manuscript for important intellectu-


Financial Disclosure: None reported.


REFERENCES

1. Saiz A, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associ-

ated with glutamic acid decarboxylase antibodies: diagnostic clues for this


decarboxylase antibodies in patients with epilepsy. Epilepsia. 2009;51(5):760-

767.

3. Olson JA, Olson DM, Sandborg C, Alexander S, Buckingham B. Type 1 diabetes

mellitus and epilepsy partialis continua in a 6-year-old boy with elevated anti-

4. Akman CI, Patterson MC, Rubenstein A, Herzog R. Limbic encephalitis associ-

ated with anti-GAD antibody and common variable immune deficiency. Dev Med


5. Mire-Sluis A, Gaines Das R, Lermark A. Standardization of antibody prepara-

tions for use in immunogenicity studies: a case study using the World Health

Organization International Collaborative Study for Islet Cell Antibodies. Dev Biol


antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes–

globulin G to glutamic acid decarboxylase-65 from a nondiabetic patient with

multiple autoantibodies and Graves’ disease: a comparison with those present in


type and T-cell determinants on the structure of GAD65 provide insights into the mo-


9. Hampe CS, Hamme LP, Bekris L, et al. Recognition of glutamic acid decar-

boxylase (GAD) by autoantibodies from different GAD antibody–positive


10. Vincent A, Dale RC. Autoimmune channelopathies and other antibody-associated

neurological disorders. In: Dale RC, Vincent A, eds. Inflammatory and Autoim-


autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus


12. Vincent A, Dale RC. Autoimmune channelopathies and other antibody-associated

neurological disorders. In: Dale RC, Vincent A, eds. Inflammatory and Autoim-


patients with epilepsy are associated with low cortical GABA levels. Epilepsia.

2010;51(9):1898-1901.


differences between neurological and diabetic patients with anti-glutamic acid

15. Dinkel K, Rickert M, Möller G, Adamski J, Meinck HM, Richter W. Stiff-man syn-

drome: identification of 17p-hydroxysteroid dehydrogenase type 4 as a novel


16. Dav K, Ujihara N, Atkinson M, Powers AC. Glutamic acid decarboxylase auto-

antibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit


18. Malter MP, Helmstaedter C, Urbach H, Vincent A, Bien CG. Antibodies to glu-

tamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol.


19. Dalakas MC. B cells as therapeutic targets in autoimmune neurological disorders.


21. Albamkan JH, Teo J, Alexander SI. Rituximab therapy in two children with au-

toimmune thrombotic thrombocytopenic purpura. Pediatr Neurol. 2009;24(9):

1749-1752.

22. Binstadt BA, Caldas AM, Turvey SE, et al. Rituximab therapy for multisystem au-


23. Pescevitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Type 1 Diabetes Trial-

Net Anti-GD20 Study Group, Rituximab, B-lymphocyte depletion, and preser-