Delayed Allergic Reaction to Natalizumab Associated With Early Formation of Neutralizing Antibodies

Markus Krumbholz, MD; Hannah Pellkofer, MD; Ralf Gold, MD; Lisa Ann Hoffmann, MD; Reinhard Hohlfeld, MD; Tania Kämpfel, MD

Background: Natalizumab is a new therapeutic option for relapsing-remitting multiple sclerosis. As with other antibody therapies, hypersensitivity reactions have been observed. In the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) trial, infusion-related hypersensitivity reactions developed in 4% of patients, usually within 2 hours after starting the infusion.

Objective: To report a significant, delayed, serum sickness–like, type III systemic allergic reaction to natalizumab.

Design: Case report describing clinical follow-up and the serial measurement of antinatalizumab antibodies.

Patient: A 23-year-old man with relapsing-remitting multiple sclerosis developed a fever, arthralgias, urticarial exanthema, and a swollen lower lip during several days after his second infusion of natalizumab.

Results: The patient developed a delayed, serum sickness–like, type III systemic allergic reaction to natalizumab. Five weeks after initiation of this therapy, he tested positive for antinatalizumab antibodies and exhibited persistent antibody titers 8 and 12 weeks later. His symptoms completely resolved with a short course of oral glucocorticosteroids.

Conclusion: Clinicians and patients should be alert not only to immediate but also to significantly delayed substantial allergic reactions to natalizumab.

Arch Neurol. 2007;64(9):1331-1333
weeks. He had no history of allergic reactions. After excluding infectious causes, we started treatment with 60 mg of prednisolone orally for 2 days; all symptoms disappeared in the subsequent days. We diagnosed a delayed allergic reaction, discontinued natalizumab, and initiated mitoxantrone therapy after 8 weeks instead.

Evaluation of antinatalizumab antibodies by standard sandwich enzyme-linked immunosorbent assay revealed that the patient had seroconverted after the second dose of natalizumab. The number of antibodies rose further during the following 8 weeks until the first dose of mitoxantrone, when they started to decrease slightly (Figure 2). The order of magnitude of the antinatalizumab antibodies in this patient was similar to other patients who have tested positive for antibodies against natalizumab.

COMMENT

This patient showed a delayed allergic reaction that developed during several days after the second infusion of natalizumab. Tests were persistently positive for antinatalizumab antibodies as early as 5 weeks after the first dose. Most previously reported hypersensitivity reactions to natalizumab occurred within the first 2 hours after infusion. By contrast, our patient developed symptoms gradually during several days. Because we could not detect any other cause for this hypersensitivity reaction, a causal relationship with the second natalizumab infusion is very likely.

So far, typical infusion-related allergic reactions after natalizumab treatment include anaphylactoid hypersensitivity reactions with urticaria, allergic dermatitis, flushing, headache, and hypotension. These symptoms occurred within 2 hours after infusion and would be classified as type I allergic reactions. However, in our case, the clinical course points to a serum sickness–type reaction (type III), because symptoms progressed during several days. Three cases (2 patients in treatment groups, 1 patient in a placebo group, each at a single study center) of serum sickness were noted in the phase 2 trial of natalizumab in multiple sclerosis, but no further information about the time course, symptoms, or treatment of these patients was provided. Serum sickness has also been described in association with other monoclonal antibody therapies, including chimeric antibodies, such as infliximab and rituximab, as well as humanized antibodies, such as alemtuzumab. In one study with infliximab in patients with Crohn disease, serum sickness occurred in 2.8% of patients, indicating that type III allergic reactions may be more frequent with chimeric monoclonal antibodies than with humanized monoclonal antibodies.
Data from the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) trial point to an association of infusion-related reactions with the presence of antinatalizumab antibodies, as 68% of natalizumab-treated patients who had hypersensitivity reactions were persistently positive for antibodies, whereas the incidence of persistent antibodies was 6% in the entire treatment cohort.

Antinatalizumab antibodies in patients with multiple sclerosis have already been detected in 2 former studies as early as 4 weeks after a single natalizumab infusion. However, there are no data reported about adverse events or infusion-related reactions in these patients.

Our observation supports the view that hypersensitivity reactions are associated with antibody formation and that these antibodies can occur early in the treatment course with natalizumab. So far, testing is recommended within 6 months after the beginning of natalizumab therapy in patients who show evidence for therapy failure and/or infusion-like reactions. We believe that the antibody status can add important information and should therefore be tested early during natalizumab treatment in all patients who present with any type of hypersensitivity reaction.

In conclusion, patients and treating physicians should be aware that delayed hypersensitivity reactions, such as serum sickness, can develop during treatment with natalizumab. If unusual symptoms consistent with an allergic reaction occur during the first days after infusion, patients should contact their neurologists to initiate appropriate medical treatment. In such patients, early testing for natalizumab antibodies is advised.

Accepted for Publication: February 14, 2007.

Correspondence: Markus Krumbholz, MD, Institute for Clinical Neuroimmunology, Ludwig Maximilian University, Marchioninistraße 15, 81377 Munich, Germany (krumbholz@neuro.mpg.de).

Author Contributions: Dr Kümpfel had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Krumbholz, Hoffmann, Hohlfield, and Kümpfel. Acquisition of data: Krumbholz, Pelloker, Gold, and Kümpfel. Analysis and interpretation of data: Krumbholz and Kümpfel. Drafting of the manuscript: Krumbholz and Kümpfel. Critical revision of the manuscript for important intellectual content: Pelloker, Gold, Hoffmann, and Hohlfield.

Financial Disclosure: Drs Gold and Hohlfield have received grant support and consultancy fees from Schering, Teva, Serono, and Biogen-Idec.

Funding/Support: The Institute for Clinical Neuroimmunology is supported by the Hermann and Lilly Schilling Foundation, the Deutsche Forschungsgemeinschaft (German Research Foundation) (Sonderforschungsbereich 571 [Collaborative Research Centre]), and the Verein zur Therapieforschung für MS-Kranke (Society for Therapy Research for Multiple Sclerosis Patients).

Additional Contributions: Silvia Seubert provided technical assistance and Alexander Flugel, MD, and Edgar Meinl, MD, commented on the manuscript.

REFERENCES