Microarrays

Applications and Pitfalls

Hassan M. Fathallah-Shaykh, MD

Microarrays are simple assays that measure the relative expression levels of tens of thousands of genes. Excitement about their importance and potential contributions to biology and medicine has been intense. Nonetheless, recent insights into the limitations and pitfalls of microarrays have led to caution about data interpretation. Microarrays are very useful but they are also very misleading; better data analysis tools are needed to improve accuracy.

Over the past half century, scientists have studied cause-and-effect relationships between known genes and biological phenotypes or human disease. Recent technological advances have changed the landscape of biomedical research. The complete genomes of several organisms are now available, and the expression of tens of thousands of genes may be assayed by microarrays. Genomes are rich sources of complex genetic information, most of which is unknown and unpredictable. Hence, the term discovery has been introduced to imply finding without preconceived bias which genes are relevant to a biological phenotype and how the genes interact.

In a single assay, microarrays generate tens of thousands of measurements of the relative levels of messenger RNA expression. When first developed, microarrays appeared to hold great promise for translating genomics into significant advances in basic biology and medicine. The National Institutes of Health (Bethesda, Md), universities, and drug companies have invested heavily in various applications of microarrays. Nonetheless, recent findings have uncovered major pitfalls that cast doubt on the interpretation of microarray data. Herein, I review the technology of complementary DNA (cDNA) microarrays, their applications and pitfalls, and future directions in data analysis.

THE EXPERIMENTAL SYSTEM

Spotted arrays may include tens of thousands of cDNAs laid on glass slides. Each experiment uses 2 RNA samples and measures the relative expression level of the cDNAs in 1 messenger RNA as compared with the other (Figure 1). The messenger RNAs are reverse transcribed to cDNAs and labeled with fluorescent dyes, mixed, and hybridized to the glass slide. After washing, the spot-bound fluorescent dyes are excited by lasers of appropriate wavelengths to generate 2 “scanned” images, which correspond to the samples. Images are analyzed to quantify (1) the signal within each spot and (2) a small rim of background surrounding each spot. The principal measurement is the expression ratio of each spot:

$$\log_2 \left(\frac{\text{Background-subtracted Intensity in Sample}}{\text{Background-subtracted Intensity in Reference}} \right)$$

A log_2(ratio) greater than 0 implies up-regulation and a log_2(ratio) less than 0 implies down-regulation. A data set of a single experiment contains tens of thousands of ratios.

Microarray experiments using spotted arrays are usually designed to compare each of several samples to a single reference RNA that is common to all experiments. The data are expressed in a ma-

Author Affiliations: Department of Neurological Sciences, Section of Neuro-oncology, Rush University Medical Center, Chicago, Ill.
mas, large B-cell lymphoma, and breast carcinoma.1,10-15

tions of central nervous system embryonal tumors, gliol
terns of genetic expression that predict new classifica-
Preliminary proofs of principles include reports of pat-
accurate and sensitive than those based on microscopy.

based on molecular expression are expected to be more

classification of disease. Specifically, classifications
ome-scale molecular expression refines the pathological
molecular targets and systems that create the biology.

The enthusiasm about the potential of microarrays has
short-term survival times and drug response vs resis-
predict distinct clinical behaviors like long-term vs
within the same pathological class into subgroups that
predict the best targets that transition the whole system
between phenotypes.

POTENTIAL APPLICATIONS OF MICROARRAYS
IN BIOLOGY AND MEDICINE

The enthusiasm about the potential of microarrays has
been intense.7-9 Experimental designs are usually aimed
at discovering (1) patterns of expression that classify
disease phenotypes and predict clinical behavior or (2)
molecular targets and systems that create the biology.
The first goal is based on the intuitive idea that geno-
scale molecular expression refines the pathological
classification of disease. Specifically, classifications
based on molecular expression are expected to be more
accurate and sensitive than those based on microscopy.
Preliminary proofs of principles include reports of pat-
terns of genetic expression that predict new classifica-
tions of central nervous system embryonal tumors, gli-
omas, large B-cell lymphoma, and breast carcinoma.1,10-15
For example, the molecular classes may either replicate
the pathological distinction or divide the subjects
within the same pathological class into subgroups that
predict distinct clinical behaviors like long-term vs
short-term survival times and drug response vs resis-
tance.

The idea that the global transcriptional response con-
stitutes molecular phenotypes has recently received at-
tention.12,16,17 In this model, phenotypes are created by
molecular systems in which single genes or molecules
belong to rich networks of dynamic molecular interac-
tions that include transcriptional regulation, signaling
pathways, protein-protein, and protein–nucleic acid in-
teractions.16,18 Examples of microarray applications in sys-
tems biology include the discovery of (1) the regulation
of the transcriptional response when yeast cells encoun-
ter nutrients, (2) the yeast galactose-utilization pathway,
and (3) the principles of balanced genetic expression
and opposing molecular functions behind the pheno-
types of meningiomas and cultured gliomas.16,19-22 Theo-
retically, one could apply microarrays to discover new
molecular classifications of neurological diseases, to
study and define the molecular systems that create each
individual phenotype, and to perturb the network to
find the best targets that transition the whole system
between phenotypes.

PITFALLS OF MICROARRAYS

Following the initial hype and excitement about micro-
arrays, their pitfalls and limitations are causing a hard
reality check. Current methods for microarray expres-
sion data analysis require numerous samples and yield
measurements of low specificity. Kothapalli et al23
examined microarray data from 2 different systems.
They report inconsistencies in sequence fidelity of the
spotted microarrays, variability of differential expres-
sion, low specificity of cDNA probes, discrepancy in
fold-change calculations, and lack of probe specificity
for different isoforms of a gene. Ntzani and Ioannidis24
examined 84 large-scale microarray expression data sets
that address major clinical outcomes including death,
metastasis, recurrence, and response to therapy. They
found that these studies show variable prognostic per-
formance. Tan et al25 examined gene expression mea-
surements generated from identical RNA preparations
that were obtained using 3 commercially available
microarray platforms from Affymetrix, Amersham, and
Agilent. Correlations in gene expression levels and
comparisons for significant gene expression changes in
this subset showed considerable divergence across the
different platforms. Michiels et al26 reanalyzed data
from the 7 largest published studies that have
attempted to predict prognosis of patients with cancer
on the basis of DNA microarray analysis. The results
reveal that the list of genes identified as predictors of
prognosis was highly unstable and molecular signatures
were strongly dependent on the selection of patients in
the training sets. In addition, 5 of the 7 studies did not
classify patients better than chance. The poor specificity
and reproducibility are not surprising considering all
the experimental variables that affect the quality of the
data sets. These include variations in the laboratories,
individuals, probe labeling, biochemical reactions, scan-
ers, and lasers. Because of the low specificity, valida-
tion by other methods for measuring gene expression
has become the “gold standard.”25,27 However, biologi-
cal samples are not always abundant, and the price tag
of validating all the genes discovered by microarray
expression profiling is astronomical.
THE NATURE OF THE PROBLEM

The specificity of the discovery should be stringent when the data sets consist of tens of thousands of genes and contain a predominant majority of noise. To illustrate, let us consider the example of a data set containing 500 true states of genetic expression (up-regulated or down-regulated) and 19,500 false-positive states (Table). Specificities of 99% and 95% yield 195 and 975 false-positive expression states, respectively. Thus, an analytical method having 100% specificity and 99% specificity discovers 695 genes (500 + 195), 28% (195/695) of which are false positive. Another method having 50% sensitivity and 99% specificity yields 445 genes (250 + 195), 44% (195/445) of which are false positive. This example illustrates the limitations of statistical significance when noise is predominant.

Microarrays assay for the relative expression levels of a cDNA (1) in a biological sample as compared with another and (2) relative to other cDNAs within the same sample. The accuracy of fold changes is critical for data analysis. The results of Kothapalli et al.21 reveal poor reproducibility and discrepancies of fold-change calculations between microarrays (interarray). Furthermore, the accuracy of calculations of fold changes of genes within a single microarray (intra-array) is not known. Low specificity, the preponderance and heterogeneity of noise, and inaccurate fold-change calculations impose significant limitations on data analysis. For example, apparent molecular classifications may be caused by data set–specific noise and the results of 1 laboratory may disintegrate when tested independently.24 Furthermore, variations in gene expression levels between biological samples may be caused by noise and not biological heterogeneity.

HIGHLY SPECIFIC EXPRESSION DISCOVERY

Recent reports describe mathematical models that shed light on the behavior of noise in microarray data sets and algorithms that discover highly specific states of genetic expression (up-regulated or down-regulated) from genomewide expression profiling.10,28 The mathematical models incorporate the principles of (1) preponderance and (2) heterogeneity of noise. The preponderance of noise implies that (1) the overwhelming majority of the genes on the array are not differentially expressed between samples (true negatives) and (2) the truly negative genes generate false-positive expression data (noise). Noise heterogeneity implies that the distribution of noise varies between data sets depending on quality. These principles may be summarized as follows:

1. Each sample vs reference comparison generates tens of thousands of expression ratios.
2. The model is based on the idea that less than 5% of all the genomic genes are truly differentially expressed between the sample and reference (true positives). The expression levels of the other more than 95% are not expected to be different (true negatives).
3. Even when the expression levels of the genes do not differ between the sample and reference, the predominant majority of their measured expression ratios are not equal to 1 (noise, artifacts, or false positives).
4. The distributions of the false positives vary widely between experiments; the variability is determined by quality.
5. True-positive (<5%) and false-positive ratios (>95%) share the same distributions.

The mathematical tools generate highly specific discovery by modeling and filtering noise (Figure 2). The use of mathematical modeling and filters is common; to name a few examples, engineers apply filters to solve problems of noise in cellular telephones, digital music, and digital television.

SIGNIFICANCE AND FUTURE DIRECTIONS

Highly specific genome-scale discovery of states of genetic expression has applications in all aspects of biology and medicine; it facilitates hypothesis-driven research and sets the stage for studies in systems biology.10,16,28 Several models that explain the relationship of genotype to phe-
notype have evolved over the past 40 years. First is the model of a single genetic lesion causing a phenotype; an example is sickle cell disease. A second model is that of several genotypes causing the same phenotype; examples include malignant brain tumors and Alzheimer disease. A third model is that of a single genetic lesion causing distinct phenotypes depending on polymorphisms; examples include hereditary Cretzfeldt-Jakob disease and fatal familial insomnia. Data from the highly specific genome-scale discovery in meninigiomas are consistent with a fourth model of complex molecular systems. These models are not exclusive; for instance, complex molecular systems may also explain the heterogeneity of the clinical phenotypes of a dominant genetic lesion like expansion of the CAG repeats of Huntington disease. In this model, single genes or molecules of the cell belong to rich networks of molecular interactions that include transcriptional regulation, signaling pathways, protein-protein, and protein–nucleic acid interactions. These models are not exclusive; for instance, complex molecular systems may also explain the heterogeneity of the clinical phenotypes of a dominant genetic lesion like expansion of the CAG repeats of Huntington disease.

The idea that molecular systems, and not single genes, create phenotypes has important biological and therapeutic implications. The majority of clinical trials that have targeted single or a few genes have failed; most compounds that show efficacy in preclinical experiments and phase 1 and phase 2 clinical trials turn out to be ineffective in very expensive phase 3 trials. Hopefully, systems biology will improve the decision making for the transition to phase 3 clinical trials. The results of the meningioma study support the idea that the phenotypes are created by the principles of (1) multiplicity and (2) balancing of opposing molecular functions. Multiplicity is apparent because of the multifunctionality of single genes and because a given phenotype is caused not by a single molecule but rather by up-regulating several genes that promote a desirable "aberrant" function and by down-regulating a number of genes that prevent it. Thus, a "normal" biological phenotype seems to be created, maintained, and controlled by a tight balancing of opposing molecular functions. Meningiomas disturb this balanced expression to promote their phenotypes. The principle of multiplicity of complex molecular systems may explain the shortcomings of drug development. Targeting single genes or single pathways is likely to fail because molecular systems have redundant molecules or pathways that bypass the blockade. It is intuitive that targets selected based on molecular systems are more likely to be clinically effective than targets selected based on single molecules or pathways.

Microarrays can be extremely useful for many biological fields, particularly clinical neurology and systems biology, but they can also be very misleading. Not unlike many fields in physics, the full potential of microarrays awaits advances in mathematics. We ought to step back to the drawing board to develop better tools for data analysis.

Accepted for Publication: July 29, 2004.

Correspondence: Hassan M. Fathallah-Shaykh, MD, Department of Neurological Sciences, Section of Neuro- oncology, Rush University Medical Center, Chicago, IL 60612 (hfathall@rush.edu).

REFERENCES
