lack an HVA delivery term because brain HVA enters mainly ventricular CSF as a product of dopamine metabolism in basal ganglia and frontal cortex.\(^3\)

\[
(4) \quad FC_{\text{output}} = FC_{\text{CSF,input}} - \text{loss by diffusion/transport.}
\]

In equation 4, output and input subscripts designate HVA concentrations at the output and input of the CSF compartment, respectively. In our article,\(^1\) we calculated that \(FC_{\text{output}}\) from both the cerebral and lumbar subarachnoid spaces was reduced by half in the elderly because \(F\) was reduced by half while output HVA concentration was the same as in the young group. The 50% reduction in output corresponds to a 50% reduction in brain HVA delivery to CSF, \(\sigma_{\text{HVA}}\) (equations 2 and 3).\(^1\) As we noted,\(^1\) this conclusion agrees with postmortem and imaging evidence of reduced brain dopamine metabolism in the elderly.

Stanley I. Rapoport, MD
Mark B. Schapiro, MD
Conrad May, MD

Correspondence: Dr Rapoport, Brain Physiology and Metabolism Section, Bldg 10, Rm 6N202, National Institute on Aging, NIH, Bethesda, MD 20892 (sir@helix.nih.gov).

Error in Byline. In the Original Contribution by Sachdev et al titled “Homocysteine and the Brain in Midadult Life: Evidence for an Increased Risk of Leukoaraiosis in Men,” published in the September issue of the ARCHIVES (2004; 61:1369-1376), an author name was omitted from the byline at article submission. The byline should have read Perminder Sachdev, MD, PhD, FRANZCP; Ruth Parslow, PhD; Chris Salonikas, MApplSc; Ora Lux, PhD; Wei Wen, PhD; Jerome Maller, MSc; Rajeev Kumar, MD, FRANZCP; Daya Naidoo, MD, FRCPA; Helen Christensen, PhD; Anthony Jorm, PhD, DSc.