0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contribution |

Pathological 43-kDa Transactivation Response DNA-Binding Protein in Older Adults With and Without Severe Mental Illness FREE

Felix Geser, MD, PhD; John L. Robinson, BS; Joseph A. Malunda, BA; Sharon X. Xie, PhD; Chris M. Clark, MD; Linda K. Kwong, PhD; Paul J. Moberg, PhD; Erika M. Moore, MD; Vivianna M. Van Deerlin, MD, PhD; Virginia M.-Y. Lee, PhD, MBA; Steven E. Arnold, MD; John Q. Trojanowski, MD, PhD
[+] Author Affiliations

Author Affiliations: Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Center, Institute on Aging (Drs Geser, Kwong, Moore, Van Deerlin, Lee, Arnold, and Trojanowski and Messrs Robinson and Malunda), and Departments of Biostatistics and Epidemiology (Dr Xie), Neurology (Drs Clark and Arnold), and Psychiatry (Dr Arnold), University of Pennsylvania School of Medicine, and Brain-Behavior Laboratory, Departments of Psychiatry, Neurology, and Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Medical Center (Dr Moberg), Philadelphia.


Arch Neurol. 2010;67(10):1238-1250. doi:10.1001/archneurol.2010.254.
Text Size: A A A
Published online

Background  Major psychiatric diseases such as schizophrenia and mood disorders have not been linked to a specific pathology, but their clinical features overlap with some aspects of the behavioral variant of frontotemporal lobar degeneration. Although the significance of pathological 43-kDa (transactivation response) DNA-binding protein (TDP-43) for frontotemporal lobar degeneration was appreciated only recently, the prevalence of TDP-43 pathology in patients with severe mental illness vs controls has not been systematically addressed.

Objective  To examine patients with chronic psychiatric diseases, mainly schizophrenia, for evidence of neurodegenerative TDP-43 pathology in comparison with controls.

Design  Prospective longitudinal clinical evaluation and retrospective medical record review, immunohistochemical identification of pathological TDP-43 in the central nervous system, and genotyping for gene alterations known to cause TDP-43 proteinopathies including the TDP-43 (TARDBP) and progranulin (GRN) genes.

Setting  University health system.

Participants  One hundred fifty-one subjects including 91 patients with severe mental illness (mainly schizophrenia) and 60 controls.

Main Outcome Measures  Clinical medical record review, neuronal and glial TDP-43 pathology, and TARDP and GRN genotyping status.

Results  Significant TDP-43 pathology in the amygdala/periamygdaloid region or the hippocampus/transentorhinal cortex was absent in both groups in subjects younger than 65 years but present in elderly subjects (29% [25 of 86] of the psychiatric patients and 29% [10 of 34] of control subjects). Twenty-three percent (8 of 35) of the positive cases showed significant TDP-43 pathology in extended brain scans. There were no evident differences between the 2 groups in the frequency, degree, or morphological pattern of TDP-43 pathology. The latter included (1) subpial and subependymal, (2) focal, or (3) diffuse lesions in deep brain parenchyma and (4) perivascular pathology. A new GRN variant of unknown significance (c.620T>C, p.Met207Thr) was found in 1 patient with schizophrenia with TDP-43 pathology. No known TARDBP mutations or other variants were found in any of the subjects studied herein.

Conclusions  The similar findings of TDP-43 pathology in elderly patients with severe mental illness and controls suggest common age-dependent TDP-43 changes in limbic brain areas that may signify that these regions are affected early in the course of a cerebral TDP-43 multisystem proteinopathy. Finally, our data provide an age-related baseline for the development of whole-brain pathological TDP-43 evolution schemata.

Figures in this Article

The pathological substrates of severe mental illnesses (SMI) have been debated without consensus among experts in the field ever since the time of Kraepelin1 and Bleuler.2 Although many studies have shown various structural and functional changes indicative of subcortical and cortical brain pathology in schizophrenia, the underlying cellular neuropathology of schizophrenia, as well as for mood disorders, remains to be elucidated. Indeed, there continues to be ongoing debate on the relative contributions of neurodevelopmental vs neurodegenerative pathophysiologies of schizophrenia and other psychotic disorders.35 Studies of neurodegenerative pathology such as tau or β-amyloid lesions have been reported in schizophrenia with conflicting results. The consensus is that schizophrenia is not mediated by α-synuclein–, prion-, tau-, or β-amyloid–induced neurodegeneration as occurs in Lewy body disease, prion disorders, or Alzheimer disease (AD).4,610

Discoveries of new neurodegenerative disease pathologies offer opportunities to determine if they may play a role in schizophrenia. For example, recently, 43–kDa transactivation response DNA-binding protein (TDP-43) was discovered to be the disease protein in frontotemporal lobar degeneration with ubiquitin-positive and tau- and α-synuclein–negative inclusions (FTLD-U), amyotrophic lateral sclerosis, and FTLD-U combined with amyotrophic lateral sclerosis. This led to the recognition of a novel multisystem clinicopathological spectrum disorder, ie, TDP-43 proteinopathies1113 by analogy with other neurodegenerative diseases such as tauopathies or α-synucleinopathies, and FTLD-U is now termed FTLD-TDP.14

Although the significance of pathological TDP-43 for human disease has been appreciated in the last 3 years,12 the prevalence of TDP-43 pathology in normal controls has not been definitely determined yet. However, it is plausible that TDP-43 lesions might occur at a prevalence in controls similar to those noted for tau, β-amyloid, and α-synuclein depositions in controls.1517 The relevance of the question as to the presence of TDP-43 pathology in controls is emphasized by the fact that the available studies on pathological TDP-43 in human diseases are largely restricted to late- or end-stage disease findings and relatively few control subjects have been examined for the presence of TDP-43 pathology. Indeed, there is a relative lack of information about TDP-43 pathology in the early phase of the disease course when the subjects are asymptomatic, or show mild signs of cognitive dysfunction, or when behavioral or memory changes are present that could reflect prodromal disease.12

Data on TDP-43 pathology in schizophrenia or mood disorders are scant and based on limited assessment of a few brain regions. In fact, 1 small study on schizophrenia was negative for pathological TDP-43,18 and in another study, single cases of late-onset psychosis were reported to be associated with altered TDP-43 nuclear staining.19 Further, a few cases of patients with pathological TDP-43–positive young-onset frontotemporal dementia (FTD) with psychosis as the initial feature have been reported.20 Moreover, the available studies on controls have been limited and heterogeneous but have reported little or minimal TDP-43 pathology.12,19,2132 Given that the behavioral variant of FTD may overlap with some aspects of chronic schizophrenia and the paucity of data on TDP-43 pathology in patients with chronic psychiatric diseases, including schizophrenia, as well as in controls, we examined a large cohort of patients with chronic SMI, mainly schizophrenia, to determine if they show central nervous system (CNS) accumulations of pathological TDP-43 and compared these results with TDP-43 studies in normal controls. In addition, we genotyped patients with schizophrenia for gene alterations that are known to cause TDP-43 proteinopathies, including the TDP-43 (TARDBP) and progranulin (GRN) genes.

Significant TDP-43 pathology in the amygdala/periamygdaloid region or the hippocampus/transentorhinal cortex was absent in both groups in subjects younger than 65 years but present in elderly subjects (29% [25 of 86] of the psychiatric patients and 29% [10 of 34] of control subjects). TDP-43–linked neurodegeneration exhibited 4 pathological lesion patterns including (1) subpial or subependymal, (2) focal, or (3) diffuse lesions in deep brain parenchyma as well as (4) perivascular pathology. Overall, there were no apparent differences in the frequency, degree, or pattern of pathology between both the SMI and control groups. Twenty-three percent (8 of 35) of these cases showed significant TDP-43 pathology in extended brains scans. The TDP-43–positive group was of significantly higher age at death compared with the TDP-43–negative subjects (85 vs 74.5 years; P < .001). Although no diagnostic brain topographical algorithms for TDP-43 pathology in TDP-43 proteinopathies have been developed yet, these results presented herein may indicate that TDP-43 lesions develop in limbic brain areas early in the course of cerebral neurodegenerative TDP-43 diseases or proteinopathies. However, this view requires further study and these data provide an age-related baseline for the prevalence of TDP-43 in controls, which will be important for developing whole-brain evolution schemes for TDP-43 pathology in neurodegenerative TDP-43 proteinopathies.

STUDY SUBJECTS

Individuals who underwent autopsy in the Center for Neurodegenerative Disease Research at the University of Pennsylvania from 1985 to 2009 were enrolled. These included (1) patients with a chronic SMI, mainly schizophrenia, but also cases of a schizoaffective or pure affective disorder; (2) control subjects without any known major psychiatric or neurologic condition. The patients with SMI scrutinized herein were longitudinally followed up by University of Pennsylvania investigators at state hospitals in the Commonwealth of Pennsylvania.33 All patients were prospectively recruited into the study and clinically assessed, and retrospective clinical medical record review was performed for further historical and clinical data.33,34 Informed consent for autopsy was obtained in all cases from the patient's family or legal representative in accordance with the Commonwealth of Pennsylvania law as well as protocols approved by the University of Pennsylvania institutional review boards.

To screen for TDP-43 pathology, the hippocampus/transentorhinal cortex and/or amygdala/periamygdaloid region were stained for TDP-43. We chose to stain these areas because they are among the CNS regions most consistently affected by accumulations of TDP-43 pathologies in FTLD-U.13 Those cases with evident TDP-43 pathology were then subjected to a more extensive immunohistochemical CNS examination, including frontal and superior-midtemporal cortex, cingulate, deep brain nuclei (striatum/lentiform nucleus, thalamus), and rhombencephalon (substantia nigra, cerebellum, medulla oblongata), to assess other areas commonly affected by TDP-43 pathology.11,13 In a subset of cases, various other mesocortical and neocortical brain areas in the frontal (ie, orbitofrontal), parietal (ie, angular), and occipital (ie, visual) cortex were also examined (see later).

IMMUNOHISTOCHEMICAL EXAMINATION

All cases were fully examined by routine diagnostic techniques as described previously.11,13,35,36 Briefly, small blocks of freshly dissected tissues from multiple CNS areas were fixed in 10% neutral buffered formalin or 70% ethanol with 150mM sodium chloride, paraffin embedded, and cut into 6-μm sections. Sections were subjected to immunohistochemical examination using (1) the avidin-biotin complex detection method (Vectastatin ABC kit; Vector Laboratories, Burlingame, California) or (2) BioGenex Super Sensitive Detection System Kit (BioGenex Laboratories, San Ramon, California) with 3,3-diaminobenzidine as the chromogen. The following primary antibodies were used: mouse anti–paired helical filament-1 monoclonal antibody (mAb) (a gift of Peter Davies, PhD; 1:1000), mouse antiubiquitin mAb (1510; Chemicon, Temecula, California; 1:100 000), rabbit polyclonal anti–TDP-43 (Proteintech Group, Chicago, Illinois; 1:4500), rat antiphosphorylated TDP-43 mAb (S409/41036; 1:1000), mouse anti–TDP-43 mAb (TDP 171; generated in the Center for Neurodegenerative Disease Research, Philadelphia, Pennsylvania; 1:50 000), mouse anti–α-synuclein mAb (Syn303; generated in the Center for Neurodegenerative Disease Research; 1:4000), mouse anti–human leucocyte antigen mAb (DakoCytomation, Glostrup, Denmark; 1:5000), rabbit polyclonal anti–glial fibrillary acidic protein antibody (DakoCytomation; 1:5000), mouse anti–microtubule associated protein 2 (M12) mAb (generated in the Center for Neurodegenerative Disease Research; 1:1), and rabbit polyclonal anti–fused in sarcoma (FUS) antibody (Sigma-Aldrich, St Louis, Missouri; 1:500). Sections stained for ubiquitin, TDP-43, and human leucocyte antigen, M12, and FUS were pretreated by boiling in citrate antigen unmasking solution (Vector Laboratories; 1:100) using a microwave, and those stained for α-synuclein were pretreated with 80% formic acid. Double-labeling immunofluorescence immunohistochemical examination using Alexa Fluor 488– and 594–conjugated secondary antibodies (Molecular Probes, Eugene, Oregon) was performed as previously described.11,35 TDP-43 inclusions were assessed based on morphologies and distribution in a given brain area as described elsewhere.13,27 Positive controls were human disease CNS tissue sections with known pathological reactivity to the antibody in question, and they were included in every immunohistochemical staining procedure as described previously.11,13,35,36 Further, normal nuclear staining in unaffected regions of CNS sections served as internal controls for each slide. In addition, immunohistochemical staining of selected cases found to show TDP-43 immunoreactivity was performed with the omission of the primary rabbit polyclonal anti–TDP-43 (Proteintech Group) to investigate the specificity of recognizing actual TDP-43 pathology. Digital images of immunohistochemical examination and immunofluorescence were obtained using an Olympus BX 51 (Tokyo, Japan) microscope using a digital camera DP71 (Olympus, Orangeburg, New York) and DP manager (Olympus).

EVALUATION OF PATHOLOGY

TDP-43 pathology was rated on a 5-point ordinal scale (0, none; 1, rare/minor; 2, mild; 3, moderate; 4, severe/numerous) by 3 of us (F.G., J.L.R., and J.Q.T.). For the purpose of this study, TDP-43 pathology was considered to be “significant” when a grade of 3 or 4 was assigned. We chose the assessment of pathology by means of an ordinal scale rather than by using numeric image analysis-based quantification tools, because the former acknowledges the sequential nature of stages of increasing severity, ultimately corresponding to a spread of pathology throughout a given section or the brain as shown for all major neurodegenerative diseases. In fact, ordinal data provide information about a relation of severity stages rather than being a measurement acknowledging that 1 stage follows continuously into the other, which, therefore, represent sequential classes rather than values on a numerical scale.

GENETIC ANALYSES

Genomic DNA was extracted from brain tissue using standard methods (Qiagen Inc, Valencia, California). The coding region of the TARDBP (exons 2-6) and GRN (exons 1-13, with exon 1 representing the 5′ untranslated region referred to in previous publications as exon 0) genes encompassing 50 to 200 base pairs of adjacent intronic sequence were bidirectionally sequenced as previously described.37,38 Briefly, amplification reactions (50 μL) were performed with 100-ng DNA using AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, California) and 200nM (final concentration) of each primer were used (eTable). Sequencing was performed by Agencourt Bioscience Corporation (Beverly, Massachusetts). Results were analyzed using Mutation Surveyor software (SoftGenetics LLC, State College, Pennsylvania).

STATISTICAL ANALYSES

The data were analyzed using SPSS 16.0 for Windows (SPSS, Inc, Chicago). The “average” (and “spread”) of data on patient characteristics was estimated by calculating the median (and 25th-75th percentiles). For group comparison, the Mann-Whitney U test was used. Contingency tables were analyzed with the χ2 test (or Fisher exact test). The significance level for all comparisons was set at .01 rather than the usual .05 because multiple tests were done. All statistical tests applied were 2-sided.

STUDY SUBJECTS’ CLINICAL CHARACTERISTICS AND GENOTYPING FINDINGS

We examined 151 subjects including 91 patients with chronic SMI and 60 controls. The study subject characteristics are summarized in Table 1. Schizophrenia was present in 72 cases, schizophrenia with an additional affective component (depression or a bipolar disorder) was recorded in 11 cases, and schizophrenia with anxiety, in 1. Four patients showed an isolated mood disorder. One subject showed cognitive, motor, and behavioral features resembling qualities of an “autistic savant disorder.” Another 3 subjects (“gray cases”) showed milder clinical features, ie, cognitive (n = 2) or predominantly psychiatric (n = 1) issues that were not considered diagnostic for a definite disease; these features included both patients' complaints and physician-assessed signs and were not considered exclusionary for this study. Hence, the 2 subjects with the mild cognitive issues were included in the control group (and referred to as “mild cognitive impairment” without applying formal diagnostic criteria). Further, the patient with the predominant psychiatric features was put in the SMI group. There was a variable presence of deterioration in functional and cognitive abilities/dementia and, less commonly, parkinsonism. Based on the whole study cohort, the SMI group was of significantly higher age at death as compared with the control group (Table 1). However, when focusing only on the subjects 65 years and older, there was no significant difference in age at death between the SMI and control groups (median, 80.0 years [range, 75.0-86.0 years] vs median, 77.0 years [range, 70.8-89.2 years]; P = .51) allowing for a direct comparison of TDP-43 between these groups.

Table Graphic Jump LocationTable 1 Summary of Study Subjects' Characteristics
TDP-43 MICROSCOPIC FINDINGS

Tissue was available and examined for 137 hippocampi/transentorhinal cortices (89 subjects with SMI; 48 controls) and 147 amygdalae/periamygdaloid regions (91 subjects with SMI; 57 controls). Control experiments with the omission of the primary rabbit polyclonal anti–TDP-43 antibody in selected positive cases did not reveal TDP-43 pathology (data not shown). Significant (moderate or severe) and mild TDP-43 pathology was found in only elderly subjects, ie, those 65 years and older. In fact, TDP-43 pathology comprising (1) neuronal and glial cytoplasmic inclusions, (2) pathological cellular processes (dystrophic cellular processes or axonal swellings), (3) roundish neuropil grains, (4) and diffuse, punctuate or dotlike cytoplasmic staining (“preinclusions”), in combination with the absence of nuclear TDP-43 immunoreactivity, and (5) rarely, neuronal intranuclear inclusions were found in a total of 35 study subjects (29.2% of the cohort 65 years and older [n = 120] and 23.2% of total cohort [n = 151]) (Table 2). Moreover, of those cases with significant pathology, 8 psychiatric patients (22.9%) showed significant TDP-43 pathology in the extended brain scan. Indeed, some degree of TDP-43 pathology was present in the brainstem and basal ganglia (Table 3). For the cortex, TDP-43 pathology was most pronounced in the amygdala and allocortex but less in the mesocortex or neocortex. The TDP-43 findings of the 35 cases with significant pathology in the (peri)amygdala and/or hippocampus/transentorhinal cortex are depicted in Table 3. For the brain areas not shown on Table 3, mild mesocortical TDP-43 pathology (ie, orbitofrontal cortex) and severe insular cortex TDP-43 pathology were present in 1 case each with severe CA1-subiculum pathology. Significant neocortical TDP-43 pathology was infrequent for the temporal and frontal cortex; additional neocortical brain areas in the parietal and occipital lobe examined in a subset of cases showed similar findings.

Table Graphic Jump LocationTable 2 Frequency of TDP-43 Pathology in Total Study Cohort and Subjects 65 Years and Oldera
Table Graphic Jump LocationTable 3 Whole-Brain TDP-43 Pathology in Chronic Psychotic Illness and the Controls 65 Years and Older

Because there were overall no apparent differences in the frequency, degree, or morphological pattern of pathology between the SMI and control groups, the results are presented as a whole in the following summary. Briefly, the brain areas with significant TDP-43 pathology showed morphological features that were sufficient to delineate 4 morphological groups or patterns including subpial/subependymal, diffuse, and focal lesions as well as perivascular pathology, which are described in more detail later. Overall, both the diffuse and focal types of TDP-43 pathology appeared to be more frequent in the gray than in the white matter, and conversely, the perivascular TDP-43 pathology was more common in white than gray matter. Subpial/subependymal pathology was present in both of these compartments. The latter and the perivascular type of TDP-43 pathology were often found in areas that also showed the presence of corpora amylacea. TDP-43 immunoreactivity in the tissue matrix, wherein corpora amylacea were embedded, was variably present and is of uncertain significance.

Subpial/Subependymal TDP-43 Pathology

This morphological pattern was characterized by pathology mainly located at the brain surfaces including both the internal surface, ie, the subependymal location, and external surface, ie, subpial areas (Figure 1 and eFigure 1). These were present as localized foci or as bandlike swaths of dystrophic cellular processes and cells devoid of the endogenous nuclear staining coupled with diffuse or granular cytoplasmic TDP-43 staining. This was frequently found at internal surfaces immediately subjacent to the ventricular system, ie, subependymal, but also subjacent to pial surfaces (predominantly) in the molecular layer of the cortex.

Place holder to copy figure label and caption
Figure 1

Subpial or subependymal 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (B, D, and E) and antiphosphorylated S409/410 (A and C) TDP-43 antibodies. A, Schizophrenia with superimposed dementia with many subpial dystrophic cellular processes in the periamygdaloid cortex (arrow) (bar = 500 μm). B, Amygdala of a subject with schizophrenia showing subependymal cytoplasmic granular TDP-43 immunoreactivity (arrow) (bar = 100 μm). C, Higher magnification of part A showing dystrophic cellular processes (eg, arrow) (bar = 200 μm). D, High magnification of part B showing granular TDP-43 immunoreactivity (eg, arrow) (bar = 20 μm). E, Alveus of a subject with schizophrenia with superimposed dementia showing subependymal cytoplasmic TDP-43 immunoreactivity (large arrow) and dystrophic cellular processes (small arrow) (bar = 50 μm).

Graphic Jump Location
Focal TDP-43 Pathology

Herein, we use the term focal pathology to denote single, small foci of pathology consisting of groups of cells with cytoplasmic pathology or the presence of abnormal cellular processes in deeper regions of the brain parenchyma, and it does not refer to pathology found subjacent to internal or external brain surfaces or in a perivascular localization. Sometimes, single cells consisting of a nucleus devoid of TDP-43 staining were present combined with a weak, diffuse, punctuate or dotlike, or virtually absent cytoplasmic TDP-43, and cell loss was not obvious in these cases (Figure 2).

Place holder to copy figure label and caption
Figure 2

Focal 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (A-F) anti–TDP-43 antibody. A and B, (Trans)entorhinal cortex of a patient with schizophrenia. A, Lack of endogenous TDP-43 staining (“cleared nucleus”) (large arrow) and hardly discernable cytoplasmic TDP-43 immunoreactivity (small arrow) (bar = 20 μm) in a neuron. B, Medium-size dense neuronal cytoplasmic inclusions (large arrow) and 2 smaller TDP-43 pathological aggregations (small arrow) (bar = 20 μm). C, Large neuronal cytoplasmic inclusion (large arrow) and a cleared nucleus (small arrow) subadjacent to the hippocampal pyramidal cell layer in a subject with schizophrenia (bar = 20 μm). D, Skeinlike inclusion in a nigral neuron (large arrow) associated with a cleared nucleus in a patient with schizophrenia (small arrow) (bar = 20 μm). E, Neuronal intranuclear inclusion (large arrow) in a cell devoid of the endogenous nuclear staining in the hippocampal CA1 area neuron in an elderly control with mild cognitive impairment (bar = 20 μm). Note the presence of normal nuclear staining in surrounding neurons (small arrow).

Graphic Jump Location
Diffuse TDP-43 Pathology

Herein, the term diffuse pathology refers to a more uniform pathology of varying degree that covers a significant proportion of a given brain area as denoted in Table 3, but it does not imply spread of pathology into wide neocortical brain regions as used elsewhere for pathological TDP-4331,39 or α-synuclein lesions.40 Diffuse pathology was found in the CA4-CA1–subiculum area of the hippocampus with predominantly dystrophic neuritic pathology, but also with intermingled neuronal cytoplasmic inclusions (Figure 3). In single cases, the absence of microtubule associated protein 2 staining of cellular processes in this brain area was accompanied by TDP-43 dystrophic pathology (data not shown). Diffuse pathology was also present in other brain areas such as the amygdala or, in 1 case (case 21 in Table 3), in the temporal neocortex in a morphological pattern reminiscent of FTLD-U subtype 2, according to Sampathu and colleagues.41 The diffuse TDP-43 pathology often was found in the same area as tau pathology, however, with only partial colocalization. This variable colocalization was found both in the SMI and control groups and was located in neuronal cell bodies and dystrophic cellular processes including those in neuritic plaques (Figure 3E-J and eFigure 2). Areas with significant TDP-43 showed variable microglia infiltration and astrogliosis consistent with (reactive changes to) a neurodegenerative process (data not shown).

Place holder to copy figure label and caption
Figure 3

Diffuse 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (A) and antiphosphorylated S409/410 (B-D) TDP-43 antibodies. A, CA1-subiculum area of the hippocampus showing severe dystrophic TDP-43 pathology in a subject with mild cognitive impairment (eg, arrow) (bar = 100 μm). B, CA1-subiculum area of the hippocampus showing severe dystrophic TDP-43 pathology in a subject with schizophrenia (eg, arrow) (bar = 100 μm). C, Subject with schizophrenia with superimposed dementia with neuronal TDP-43 pathology in the periamygdaloid cortex (bar = 100 μm) (eg, arrow). D, Dentate gyrus in the hippocampus of a subject with mild cognitive impairment showing some neuronal cytoplasmic inclusions (eg, arrow). E-J, TDP-43 and tau double immunofluorescence immunohistochemical examination using phosphorylation-independent anti–TDP-43 antibodies (E and H) and paired helical filament-1 antibodies (F and I). E-G, Periamygdaloid cortex of a subject with schizophrenia with superimposed dementia showing variable colocalization of pathological tau (F) and TDP-43 (E) (merge in part G) inclusions (eg, arrow) (bar = 100 μm). H-J, Hippocampus of a subject with mild cognitive impairment demonstrating convergence of tau (l) and TDP-43 (H) (merge in part J) pathology in a dystrophic plaque (marked by arrows) (bar = 50 μm).

Graphic Jump Location
Perivascular TDP-43 Pathology

This pattern of TDP-43 pathology was present predominantly in the form of dystrophic cellular processes or cytoplasmic immunoreactivity in brain areas surrounding medium blood vessels, often focally in the white matter (Figure 4). Rarely, pathological TDP-43 associated with small blood vessels/capillaries was present.

Place holder to copy figure label and caption
Figure 4

Perivascular 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (F and G) and antiphosphorylated S409/410 (A-E and H) TDP-43 antibodies in the amygdala or periamygdaloid areas. A and B, Low-power magnification of a severe perivascular lesion showing predominantly dystrophic TDP-43 immunoreactive cellular profiles in the periamygdaloid white matter (A) (eg, arrow) or TDP-43 immunoreactivity in the cytoplasm and proximal cellular processes in the amygdala (B) in 2 elderly control subjects (bars = 500 μm). C, Same control subject as in part A showing perivascular, mainly dystrophic (eg, arrow), TDP-43 immunoreactivity at a higher magnification (bar = 200 μm). D, Subject with schizophrenia with superimposed dementia with perivascular dystrophic TDP-43 pathology in the periamygdaloid white matter (eg, arrow) (bar = 200 μm). E and F, Medium-power (E) (bar = 200 μm) and high-power (F) (bar = 50 μm) views of the same control subject as shown in part B. Note the presence of predominantly cytoplasmic TDP-43 immunoreactivity (eg, arrows), coupled with a lack of endogenous nuclear TDP-43 staining in part F. G and H, Capillary-associated TDP-43 pathology in periamygdaloid gray matter in a patient with schizophrenia and superimposed dementia (arrows) (bars = 20 μm).

Graphic Jump Location
GENETIC FINDINGS

DNA sequence analysis of TARDBP in 79 patients with schizophrenia revealed no mutations or novel polymorphisms. A heterozygous missense variation of unknown significance, NM_002087.2:c.620T>C, resulting in an amino acid change (p.Met207Thr) was identified in exon 7 of GRN in 1 patient with schizophrenia. This novel variant has not been studied previously (see Yu et al42 for a recent update on currently known GRN mutations) but this change is predicted to be benign according to PolyPhen (http://genetics.bwh.harvard.edu/pph/), a Web site that performs automated predictions of the impact an amino acid change will have on the structure and function of a protein.43

CLINICOPATHOLOGICAL CORRELATION

Age at death was higher in the group with significant TDP-43 pathology vs the group without (median, 85.0 years [range, 80.0-90.0 years] vs median, 74.5 years [range, 64.0-82.0 years]; P < .001). The age at onset of SMI cases was similar (median, 24.0 years [range, 20.2-29.8 years] vs median, 24.0 years [range, 20.0-30.0 years]; P = .91). When comparing age at death within either the SMI or the control group, the TDP-43–positive cases had a higher age at death (SMI group: median, 84.0 years [range, 79.5-88.0 years] vs median, 77.5 years [range, 71.8-83.0 years]; P = .002; control group: median, 88.5 years [range, 79.2-94.2 years] vs median, 64.0 years [range, 54.8-74.2 years]; P < .001). Likewise, the proportion of TDP-43–positive cases within age decades increased with advancing age as shown in Table 4. Similarly, the proportions of TDP-43–positive subjects relative to the total number of subjects with significant TDP-43 pathology increased significantly toward higher age category.

Table Graphic Jump LocationTable 4 Age-Related Frequency of Significant TDP-43 Pathology in Patients With Chronic Severe Mental Illness and Control Subjects

Notably, 16 of 25 patients with SMI (64.0%) with significant TDP-43 pathology (either diffuse, focal, or subpial/subependymal pattern) showed a clinical history of deterioration of functional or cognitive abilities (dementia); 2 of the 8 control subjects (20%) with significant TDP-43 pathology exhibited slight cognitive impairment and complaints, respectively (denoted “gray cases” mentioned earlier). Almost all subjects with significant perivascular TDP-43 pathology had recorded clinical or pathological evidence of cardiovascular findings, including hypertension, arteriosclerosis, peripheral vascular disease, or CNS macroinfarcts or microinfarcts.

The patient with schizophrenia with superimposed dementia and the GRN gene variant had subependymal TDP-43 pathology in the alveus and amygdala, focal TDP-43 pathology in the parenchyma of the brainstem, and rare TDP-43 pathology in the orbitofrontal cortex. There were no apparent clinical differences in this subject as compared with the other cases in the SMI with dementia group. Since the meaning of the GRN variant is unknown and the clinical and pathological evaluation did not reveal any distinguishing features in this patient, the significance of this finding is unclear.

Finally, given the recent finding of FUS pathology in a small subset of FTLD-U cases negative for TDP-43 (“atypical FTLD-U”),4446 we evaluated 18 patients with schizophrenia exhibiting deterioration of functional and cognitive abilities (dementia), but without significant TDP-43 pathology, for FUS pathology in the amygdala and/or hippocampus. However, these studies did not show any pathological FUS immunoreactivity as published for atypical FTLD-U.46

Ever since the initial definitions of psychotic illnesses were introduced into the literature more than 100 years ago, there has been a debate about a morphological substrate of schizophrenia, and both neurodegenerative and neurodevelopmental pathogenetic theories to explain schizophrenia have been offered. Reports on the frequency or severity of neurodegenerative changes such as AD plaques and neurofibrillary tangles continue with some controversy.4,69 Further, although the significance of pathological TDP-43 for human disease was appreciated only recently, the presence or degree of TDP-43 pathology in controls have not been systematically addressed.22,30 Also, since the behavioral variant of FTD might overlap clinically with some aspects of schizophrenia, and therefore might be misdiagnosed in life as schizophrenia, we undertook the study described herein to examine the postmortem CNS in a large cohort of patients with chronic SMI, mainly schizophrenia, for the presence of pathological TDP-43, in comparison with control individuals. We found evidence of significant, moderate, or severe pathological TDP-43 in approximately 30% of patients with chronic SMI/schizophrenia and controls 65 years and older, but not in younger individuals; mild pathology was present in approximately another 20% of the elderly study subjects. Moreover, the group with significant TDP-43 pathology was sufficient to create 4 different morphological patterns that sometimes showed overlap in a given case.

A significant proportion of cases showed TDP-43 pathology comprising dystrophic cellular processes and preinclusions located closely subjacent to ventricular surfaces with a focal or bandlike appearance. The significance of this finding is unknown, and further studies are needed to define the relationship of TDP-43 lesions with brain surfaces because this might imply an association between mechanisms of TDP-43 with processes involving the ependymal lining and the cerebrospinal fluid system. Mechanistic speculations might thus include a bidirectional interaction of the CNS and the cerebrospinal fluid, and it is known that there is an increase in cerebrospinal fluid TDP-43 levels in patients with FTLD-U and amyotrophic lateral sclerosis compared with controls.47,48

A further morphological pattern comprised single foci of pathology either in the gray matter (often neuronal cells with a cleared nucleus coupled with stained dystrophic cellular processes) or in the white matter (mainly dystrophic cellular processes). Focal gray matter lesions could represent an early stage of TDP-43 pathology formation similar to what has been described for neurofibrillary tangle pathology in the (trans)entorhinal cortex.49 We herein show that patients with chronic SMI and controls show pathological TDP-43 aggregates in different stages of their development ranging from early, more diffuse punctuate immunoreactivity to “mature,” larger and denser inclusions including TDP-43 immunoreactivity in cellular processes. Very upstream stages of inclusion formation may include almost no discernable cytoplasmic pathological TDP-43 aggregates combined with an absence of normal nuclear immunoreactivity (“cleared nuclei”), but it remains to be established if a nucleus devoid of normal TDP-43 without cytoplasmic TDP-43 immunoreactivity might represent incipient TDP-43 pathology. Notably, changes such as this were present in all cohorts including subjects with schizophrenia with and without dementia and controls with and without mild cognitive “issues,” so this might support the idea of very early cellular pathology with the beginning of TDP-43 redistribution into the cytoplasm not severe enough yet to cause significant neuronal loss and reactive changes.

Diffuse TDP-43 pathology was present in the CA1-subiculum area of the hippocampus mainly consisting of abundant short dystrophic cellular processes intermingled with preinclusions or more “mature,” dense inclusions. This was sometimes in the same brain areas as neurofibrillary and neuritic tau pathology, but colocalization of tau and TDP-43 pathology was variable. To our knowledge, we are the first to show that this partial colocalization of tau and TDP-43 pathology does also occur in neuritic plaques. TDP-43 pathology is known to occur in patients with AD and hippocampal sclerosis and this includes abundant dystrophic TDP-43 pathology in the subiculum-CA1 region of the hippocampus.31,35,39,50 Besides the CA1-subiculum pathology, diffuse pathology was found in the amygdala or periamygdaloid cortex and, less frequently, in other cortical areas. The colocalization with tau lesions was also variable. This pattern observed herein is reminiscent of the co-occurrence of TDP-43 pathology in pathologically diagnosed cases of AD.51 Also, in addition to the subiculum-CA1 involvement, TDP-43 pathology has also been reported in the parahippocampal gyrus and entorhinal cortex, whereas the dentate gyrus was affected variably or rarely.50,51 In the present study, cytoplasmic inclusions in the dentate nucleus were uncommon both in the SMI/schizophrenia and control groups similar to a previous report showing infrequent inclusion in the fascia dentata of Guamanian controls.21 This TDP-43 finding is paralleled by published data on robust tau-positive inclusion in the fascia dentata occurring in advanced stages of AD rather than in low-grade cases.49

It was previously suggested that in advanced AD medial temporal lobe limbic structures are vulnerable to TDP-43 pathology, with the amygdala being the most susceptible region, implying a progression of TDP-43 pathology with higher-order association cortices being affected only later on (or in a subset of cases) and other limbic brain areas having an intermediate position.39,51 Neocortical pathology was present only exceptionally in our cohort. The fact that about a quarter of subjects with diffuse pathology in the hippocampus or amygdala also exhibited TDP-43 lesions in other areas, such as the rhombencephalon, deep brain nuclei, or neocortex, corroborates the multisystem concept of TDP-43 proteinopathies.13

In a subset of controls and subjects with schizophrenia, there appeared to be a greater abundance of TDP-43 pathology around blood vessels, ie, in the perivascular white matter or, less frequent, gray matter, but further studies are needed to confirm and extend this association. Moreover, most of these cases had a documented clinical history of cardiovascular problems or pathology related thereto. Considering the high prevalence of chronic vascular changes in elderly individuals, there might not necessarily be a link between ischemia and pathological TDP-43,52 but the findings herein suggest further study of this possibility. Although it also remains to be established what the localization of TDP-43 pathology around blood vessels means in terms of a hypothesized “interaction” between blood and the brain, it has been suggested recently that increased TDP-43 plasma levels occur in FTLD-U and AD and may thereby index TDP-43 pathology within the brain.53 Interestingly, another recent article reported on a “TDP-43 microvasculopathy” in FTLD-U (and familial Lewy body disease) and suggested that abnormal TDP-43 fibrillary inclusions may occur in astrocytic end-feet, raising the possibility of an impairment in the integrity of the blood-brain barrier.54

The finding of a higher age at death in the TDP-43 pathology–positive as compared with the TDP-43 pathology–negative group and, similarly, the steady increase of the frequency of pathological TDP-43 per age decade after the age of 65 years, denotes an aging-related deposition of this pathological protein with the pathology burden being higher in older subjects. This is paralleled by varying degrees of pathology of many disease proteins including tau-, β-amyloid–, and α-synuclein–related pathological aggregates in the CNS of an elderly, neurologic and cognitive normal or only mildly impaired population.15,17 The recent report on an absence of TDP-43 pathology in 8 patients with schizophrenia (or a schizoaffective disorder) might be, at least in part, due to their relatively young age with death occurring in their early 60s.18

The term atypical FTLD-U was recently coined referring to sporadic early-onset FTD with severe progressive behavioral and personality changes in the absence of aphasia or significant motor features44,45 and was, most recently, associated with FUS inclusion pathology.46 Despite some clinical similarities between schizophrenia with superimposed deterioration in functional and cognitive abilities (dementia) and atypical FTLD-U, the TDP-43 pathology–negative schizophrenia cohort with the clinical presence of dementia did not show any atypical FTLD-U–like FUS pathology, implying different disease mechanisms between these 2 disorders. However, the early nonmemory symptoms in FTD, such as addictive behaviors or disinhibition,55 resembling some aspects of schizophrenia could be due to the TDP-43 pathology in limbic brain areas as shown in a subset of schizophrenia cases in this study.

We herein show that pathological TDP-43 is present in a subgroup of patients with chronic SMI, mainly schizophrenia, and controls, with the burden of TDP-43 pathology being higher with advancing age. While TDP-43 pathology might underlie behavioral impairments or dementia in these patients with SMI/schizophrenia, the presence of similar pathology in controls suggests that the findings may be related to aging. Although no diagnostic CNS topographical algorithms for the emergence of TDP-43 pathology have been developed yet, these results may signify that limbic regions are the earliest affected in the course of a cerebral TDP-43 multisystem proteinopathy. However, this view requires further study and the data presented provide an age-related baseline for the prevalence of TDP-43 in controls, which will be important for developing whole-brain evolution schemes for TDP-43 pathology in neurodegenerative TDP-43 proteinopathies.

Accepted for Publication: January 29, 2010.

Correspondence: John Q. Trojanowski, MD, PhD, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, HUP, Maloney 3rd Floor, 36th and Spruce Street, Philadelphia, PA 19104-4283 (trojanow@mail.med.upenn.edu).

Author Contributions: Dr Trojanowski had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Geser, Clark, Van Deerlin, Lee, Arnold, and Trojanowski. Acquisition of data: Geser, Robinson, Malunda, Clark, Moberg, Moore, Van Deerlin, Lee, Arnold, and Trojanowski. Analysis and interpretation of data: Geser, Robinson, Xie, Clark, Kwong, Moore, Van Deerlin, Lee, Arnold, and Trojanowski. Drafting of the manuscript: Geser, Robinson, Clark, Moore, Van Deerlin, Lee, Arnold, and Trojanowski. Critical revision of the manuscript for important intellectual content: Geser, Robinson, Malunda, Xie, Clark, Kwong, Moberg, Van Deerlin, Lee, Arnold, and Trojanowski. Statistical analysis: Geser, Xie, Clark, Lee, Arnold, and Trojanowski. Obtained funding: Lee and Trojanowski. Administrative, technical, and material support: Robinson, Clark, Moberg, Van Deerlin, Lee, and Trojanowski. Study supervision: Lee, Arnold, and Trojanowski.

Financial Disclosure: None reported.

Funding/Support: This work was funded by grants AG10124, AG17586, and MH64045 from the National Institutes of Health. Dr Lee is the John H. Ware III Chair of Alzheimer's Research and Dr Trojanowski is the William Maul Measey–Truman G. Schnabel Jr, MD, Professor of Geriatric Medicine and Gerontology.

Online-Only Material: The eTable and eFigures are available at http://www.archneurol.com.

Additional Contributions: We thank the families of patients whose generosity made this research possible. Manuela Neumann, MD, provided the antiphosphorylated TDP-43 antibody (S409/410). We thank our colleagues at the Center for Neurodegenerative Disease Research and Department of Psychiatry, University of Pennsylvania School of Medicine, for technical support and advice, particularly Theresa Schuck, BA, Michael Partain, BA, Liying Han, MS, and Lauren Stutzbach, BA.

Kraepelin  E Dementia Praecox and Paraphrenia, 1919 Translated by Barclay R.M. Huntington. New York, NY Robert E. Krieger Publishing Co1971;
Bleuler  E Textbook of Psychiatry. 4th German. Brill AA, trans-ed. New York, NY Macmillan Press1924;
Arnold  SETrojanowski  JQ Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 1996;92 (3) 217- 231
PubMed Link to Article
Arnold  SETrojanowski  JQ Cognitive impairment in elderly schizophrenia: a dementia (still) lacking distinctive histopathology. Schizophr Bull 1996;22 (1) 5- 9
PubMed Link to Article
Iritani  S Neuropathology of schizophrenia: a mini review. Neuropathology 2007;27 (6) 604- 608
PubMed Link to Article
Arnold  SEFranz  BRTrojanowski  JQ Elderly patients with schizophrenia exhibit infrequent neurodegenerative lesions. Neurobiol Aging 1994;15 (3) 299- 303
PubMed Link to Article
Arnold  SEFranz  BRTrojanowski  JQMoberg  PJGur  RE Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 1996;91 (3) 269- 277
PubMed Link to Article
Arnold  SETrojanowski  JQGur  REBlackwell  PHan  LYChoi  C Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998;55 (3) 225- 232
PubMed Link to Article
Arnold  SEJoo  EMartinoli  MG  et al.  Apolipoprotein E genotype in schizophrenia: frequency, age of onset, and neuropathologic features. Neuroreport 1997;8 (6) 1523- 1526
PubMed Link to Article
Arnold  SETrojanowski  JQParchi  P Protease resistant prion proteins are not present in sporadic “poor outcome” schizophrenia. J Neurol Neurosurg Psychiatry 1999;66 (1) 90- 92
PubMed Link to Article
Neumann  MSampathu  DMKwong  LK  et al.  Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314 (5796) 130- 133
PubMed Link to Article
Geser  FMartinez-Lage  MKwong  LKLee  VMTrojanowski  JQ Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009;256 (8) 1205- 1214
PubMed Link to Article
Geser  FMartinez-Lage  MRobinson  J  et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 2009;66 (2) 180- 189
PubMed Link to Article
Mackenzie  IRNeumann  MBigio  EH  et al.  Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 2009;117 (1) 15- 18
PubMed Link to Article
Del Tredici  KRüb  UDe Vos  RABohl  JRBraak  H Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61 (5) 413- 426
PubMed
Bennett  DASchneider  JAArvanitakis  Z  et al.  Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66 (12) 1837- 1844
PubMed Link to Article
Price  JLMorris  JC Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol 1999;45 (3) 358- 368
PubMed Link to Article
Mateen  FJJosephs  KA TDP-43 is not present in brain tissue of patients with schizophrenia. Schizophr Res 2009;108 (1-3) 297- 298
PubMed Link to Article
Velakoulis  DWalterfang  MMocellin  RPantelis  CDean  B McLean  C Abnormal hippocampal distribution of TDP-43 in patients with-late onset psychosis. Aust N Z J Psychiatry 2009;43 (8) 739- 745
PubMed Link to Article
Velakoulis  DWalterfang  MMocellin  RPantelis  C McLean  C Frontotemporal dementia presenting as schizophrenia-like psychosis in young people: clinicopathological series and review of cases. Br J Psychiatry 2009;194 (4) 298- 305
PubMed Link to Article
Geser  FWinton  MJKwong  LK  et al.  Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 2008;115 (1) 133- 145
PubMed Link to Article
Nakashima-Yasuda  HUryu  KRobinson  J  et al.  Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 2007;114 (3) 221- 229
PubMed Link to Article
Davidson  YAmin  HKelley  T  et al.  TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathol 2009;118 (3) 359- 369
PubMed Link to Article
Mori  FTanji  KZhang  HX  et al.  Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 2008;116 (2) 193- 203
PubMed Link to Article
Zhang  HTan  CFMori  F  et al.  TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 2008;115 (1) 115- 122
PubMed Link to Article
Tan  CFEguchi  HTagawa  A  et al.  TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 2007;113 (5) 535- 542
PubMed Link to Article
Brandmeir  NJGeser  FKwong  LK  et al.  Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol 2008;115 (1) 123- 131
PubMed Link to Article
Fujita  YMizuno  YTakatama  MOkamoto  K Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci 2008;269 (1-2) 30- 34
PubMed Link to Article
Schwab  CArai  THasegawa  MAkiyama  HYu  S McGeer  PL TDP-43 pathology in familial British dementia. Acta Neuropathol 2009;118 (2) 303- 311
PubMed Link to Article
Geser  FBrandmeir  NJKwong  LK  et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 2008;65 (5) 636- 641
PubMed Link to Article
Amador-Ortiz  CLin  WLAhmed  Z  et al.  TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 2007;61 (5) 435- 445
PubMed Link to Article
Hasegawa  MArai  TAkiyama  H  et al.  TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 2007;130 (pt 5) 1386- 1394
PubMed Link to Article
Arnold  SEGur  REShapiro  RM  et al.  Prospective clinicopathologic studies of schizophrenia: accrual and assessment of patients. Am J Psychiatry 1995;152 (5) 731- 737
PubMed
Talbot  KEidem  WLTinsley  CL  et al.  Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004;113 (9) 1353- 1363
PubMed Link to Article
Uryu  KNakashima-Yasuda  HForman  MS  et al.  Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 2008;67 (6) 555- 564
PubMed Link to Article
Neumann  MKwong  LKLee  EB  et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009;117 (2) 137- 149
PubMed Link to Article
Baker  MMackenzie  IRPickering-Brown  SM  et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442 (7105) 916- 919
PubMed Link to Article
Van Deerlin  VMLeverenz  JBBekris  LM  et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 2008;7 (5) 409- 416
PubMed Link to Article
Arai  TMackenzie  IRHasegawa  M  et al.  Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol 2009;117 (2) 125- 136
PubMed Link to Article
McKeith  IGDickson  DWLowe  J  et al. Consortium on DLB, Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65 (12) 1863- 1872
PubMed Link to Article
Sampathu  DMNeumann  MKwong  LK  et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 2006;169 (4) 1343- 1352
PubMed Link to Article
Yu  CEBird  TDBekris  LM  et al.  The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 2010;67 (2) 161- 170
PubMed Link to Article
Ramensky  VBork  PSunyaev  S Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30 (17) 3894- 3900
PubMed Link to Article
Mackenzie  IRFoti  DWoulfe  JHurwitz  TA Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131 (pt 5) 1282- 1293
PubMed Link to Article
Roeber  SMackenzie  IRKretzschmar  HANeumann  M TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 2008;116 (2) 147- 157
PubMed Link to Article
Neumann  MRademakers  RRoeber  SBaker  MKretzschmar  HAMackenzie  IR A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009;132 (pt 11) 2922- 2931
PubMed Link to Article
Kasai  TTokuda  TIshigami  N  et al.  Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117 (1) 55- 62
PubMed Link to Article
Steinacker  PHendrich  CSperfeld  AD  et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65 (11) 1481- 1487
PubMed Link to Article
Braak  HBraak  E Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82 (4) 239- 259
PubMed Link to Article
Kadokura  AYamazaki  TLemere  CATakatama  MOkamoto  K Regional distribution of TDP-43 inclusions in Alzheimer disease (AD) brains: their relation to AD common pathology. Neuropathology 2009;29 (5) 566- 573
PubMed Link to Article
Hu  WTJosephs  KAKnopman  DS  et al.  Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol 2008;116 (2) 215- 220
PubMed Link to Article
Lee  EBLee  VMTrojanowski  JQNeumann  M TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol 2008;115 (3) 305- 311
PubMed Link to Article
Foulds  P McAuley  EGibbons  L  et al.  TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathol 2008;116 (2) 141- 146
PubMed Link to Article
Lin  WLCastanedes-Casey  MDickson  DW Transactivation response DNA-binding protein 43 microvasculopathy in frontotemporal degeneration and familial Lewy body disease. J Neuropathol Exp Neurol 2009;68 (11) 1167- 1176
PubMed Link to Article
Caycedo  AMMiller  BKramer  JRascovsky  K Early features in frontotemporal dementia. Curr Alzheimer Res 2009;6 (4) 337- 340
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure 1

Subpial or subependymal 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (B, D, and E) and antiphosphorylated S409/410 (A and C) TDP-43 antibodies. A, Schizophrenia with superimposed dementia with many subpial dystrophic cellular processes in the periamygdaloid cortex (arrow) (bar = 500 μm). B, Amygdala of a subject with schizophrenia showing subependymal cytoplasmic granular TDP-43 immunoreactivity (arrow) (bar = 100 μm). C, Higher magnification of part A showing dystrophic cellular processes (eg, arrow) (bar = 200 μm). D, High magnification of part B showing granular TDP-43 immunoreactivity (eg, arrow) (bar = 20 μm). E, Alveus of a subject with schizophrenia with superimposed dementia showing subependymal cytoplasmic TDP-43 immunoreactivity (large arrow) and dystrophic cellular processes (small arrow) (bar = 50 μm).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2

Focal 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (A-F) anti–TDP-43 antibody. A and B, (Trans)entorhinal cortex of a patient with schizophrenia. A, Lack of endogenous TDP-43 staining (“cleared nucleus”) (large arrow) and hardly discernable cytoplasmic TDP-43 immunoreactivity (small arrow) (bar = 20 μm) in a neuron. B, Medium-size dense neuronal cytoplasmic inclusions (large arrow) and 2 smaller TDP-43 pathological aggregations (small arrow) (bar = 20 μm). C, Large neuronal cytoplasmic inclusion (large arrow) and a cleared nucleus (small arrow) subadjacent to the hippocampal pyramidal cell layer in a subject with schizophrenia (bar = 20 μm). D, Skeinlike inclusion in a nigral neuron (large arrow) associated with a cleared nucleus in a patient with schizophrenia (small arrow) (bar = 20 μm). E, Neuronal intranuclear inclusion (large arrow) in a cell devoid of the endogenous nuclear staining in the hippocampal CA1 area neuron in an elderly control with mild cognitive impairment (bar = 20 μm). Note the presence of normal nuclear staining in surrounding neurons (small arrow).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3

Diffuse 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (A) and antiphosphorylated S409/410 (B-D) TDP-43 antibodies. A, CA1-subiculum area of the hippocampus showing severe dystrophic TDP-43 pathology in a subject with mild cognitive impairment (eg, arrow) (bar = 100 μm). B, CA1-subiculum area of the hippocampus showing severe dystrophic TDP-43 pathology in a subject with schizophrenia (eg, arrow) (bar = 100 μm). C, Subject with schizophrenia with superimposed dementia with neuronal TDP-43 pathology in the periamygdaloid cortex (bar = 100 μm) (eg, arrow). D, Dentate gyrus in the hippocampus of a subject with mild cognitive impairment showing some neuronal cytoplasmic inclusions (eg, arrow). E-J, TDP-43 and tau double immunofluorescence immunohistochemical examination using phosphorylation-independent anti–TDP-43 antibodies (E and H) and paired helical filament-1 antibodies (F and I). E-G, Periamygdaloid cortex of a subject with schizophrenia with superimposed dementia showing variable colocalization of pathological tau (F) and TDP-43 (E) (merge in part G) inclusions (eg, arrow) (bar = 100 μm). H-J, Hippocampus of a subject with mild cognitive impairment demonstrating convergence of tau (l) and TDP-43 (H) (merge in part J) pathology in a dystrophic plaque (marked by arrows) (bar = 50 μm).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4

Perivascular 43-kDa transactivation response DNA-binding protein (TDP-43) pathology. Anti–TDP-43 immunohistochemical examination using phosphorylation-independent (F and G) and antiphosphorylated S409/410 (A-E and H) TDP-43 antibodies in the amygdala or periamygdaloid areas. A and B, Low-power magnification of a severe perivascular lesion showing predominantly dystrophic TDP-43 immunoreactive cellular profiles in the periamygdaloid white matter (A) (eg, arrow) or TDP-43 immunoreactivity in the cytoplasm and proximal cellular processes in the amygdala (B) in 2 elderly control subjects (bars = 500 μm). C, Same control subject as in part A showing perivascular, mainly dystrophic (eg, arrow), TDP-43 immunoreactivity at a higher magnification (bar = 200 μm). D, Subject with schizophrenia with superimposed dementia with perivascular dystrophic TDP-43 pathology in the periamygdaloid white matter (eg, arrow) (bar = 200 μm). E and F, Medium-power (E) (bar = 200 μm) and high-power (F) (bar = 50 μm) views of the same control subject as shown in part B. Note the presence of predominantly cytoplasmic TDP-43 immunoreactivity (eg, arrows), coupled with a lack of endogenous nuclear TDP-43 staining in part F. G and H, Capillary-associated TDP-43 pathology in periamygdaloid gray matter in a patient with schizophrenia and superimposed dementia (arrows) (bars = 20 μm).

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1 Summary of Study Subjects' Characteristics
Table Graphic Jump LocationTable 2 Frequency of TDP-43 Pathology in Total Study Cohort and Subjects 65 Years and Oldera
Table Graphic Jump LocationTable 3 Whole-Brain TDP-43 Pathology in Chronic Psychotic Illness and the Controls 65 Years and Older
Table Graphic Jump LocationTable 4 Age-Related Frequency of Significant TDP-43 Pathology in Patients With Chronic Severe Mental Illness and Control Subjects

References

Kraepelin  E Dementia Praecox and Paraphrenia, 1919 Translated by Barclay R.M. Huntington. New York, NY Robert E. Krieger Publishing Co1971;
Bleuler  E Textbook of Psychiatry. 4th German. Brill AA, trans-ed. New York, NY Macmillan Press1924;
Arnold  SETrojanowski  JQ Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 1996;92 (3) 217- 231
PubMed Link to Article
Arnold  SETrojanowski  JQ Cognitive impairment in elderly schizophrenia: a dementia (still) lacking distinctive histopathology. Schizophr Bull 1996;22 (1) 5- 9
PubMed Link to Article
Iritani  S Neuropathology of schizophrenia: a mini review. Neuropathology 2007;27 (6) 604- 608
PubMed Link to Article
Arnold  SEFranz  BRTrojanowski  JQ Elderly patients with schizophrenia exhibit infrequent neurodegenerative lesions. Neurobiol Aging 1994;15 (3) 299- 303
PubMed Link to Article
Arnold  SEFranz  BRTrojanowski  JQMoberg  PJGur  RE Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 1996;91 (3) 269- 277
PubMed Link to Article
Arnold  SETrojanowski  JQGur  REBlackwell  PHan  LYChoi  C Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998;55 (3) 225- 232
PubMed Link to Article
Arnold  SEJoo  EMartinoli  MG  et al.  Apolipoprotein E genotype in schizophrenia: frequency, age of onset, and neuropathologic features. Neuroreport 1997;8 (6) 1523- 1526
PubMed Link to Article
Arnold  SETrojanowski  JQParchi  P Protease resistant prion proteins are not present in sporadic “poor outcome” schizophrenia. J Neurol Neurosurg Psychiatry 1999;66 (1) 90- 92
PubMed Link to Article
Neumann  MSampathu  DMKwong  LK  et al.  Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314 (5796) 130- 133
PubMed Link to Article
Geser  FMartinez-Lage  MKwong  LKLee  VMTrojanowski  JQ Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009;256 (8) 1205- 1214
PubMed Link to Article
Geser  FMartinez-Lage  MRobinson  J  et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 2009;66 (2) 180- 189
PubMed Link to Article
Mackenzie  IRNeumann  MBigio  EH  et al.  Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 2009;117 (1) 15- 18
PubMed Link to Article
Del Tredici  KRüb  UDe Vos  RABohl  JRBraak  H Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61 (5) 413- 426
PubMed
Bennett  DASchneider  JAArvanitakis  Z  et al.  Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66 (12) 1837- 1844
PubMed Link to Article
Price  JLMorris  JC Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol 1999;45 (3) 358- 368
PubMed Link to Article
Mateen  FJJosephs  KA TDP-43 is not present in brain tissue of patients with schizophrenia. Schizophr Res 2009;108 (1-3) 297- 298
PubMed Link to Article
Velakoulis  DWalterfang  MMocellin  RPantelis  CDean  B McLean  C Abnormal hippocampal distribution of TDP-43 in patients with-late onset psychosis. Aust N Z J Psychiatry 2009;43 (8) 739- 745
PubMed Link to Article
Velakoulis  DWalterfang  MMocellin  RPantelis  C McLean  C Frontotemporal dementia presenting as schizophrenia-like psychosis in young people: clinicopathological series and review of cases. Br J Psychiatry 2009;194 (4) 298- 305
PubMed Link to Article
Geser  FWinton  MJKwong  LK  et al.  Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 2008;115 (1) 133- 145
PubMed Link to Article
Nakashima-Yasuda  HUryu  KRobinson  J  et al.  Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 2007;114 (3) 221- 229
PubMed Link to Article
Davidson  YAmin  HKelley  T  et al.  TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathol 2009;118 (3) 359- 369
PubMed Link to Article
Mori  FTanji  KZhang  HX  et al.  Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 2008;116 (2) 193- 203
PubMed Link to Article
Zhang  HTan  CFMori  F  et al.  TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 2008;115 (1) 115- 122
PubMed Link to Article
Tan  CFEguchi  HTagawa  A  et al.  TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 2007;113 (5) 535- 542
PubMed Link to Article
Brandmeir  NJGeser  FKwong  LK  et al.  Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol 2008;115 (1) 123- 131
PubMed Link to Article
Fujita  YMizuno  YTakatama  MOkamoto  K Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci 2008;269 (1-2) 30- 34
PubMed Link to Article
Schwab  CArai  THasegawa  MAkiyama  HYu  S McGeer  PL TDP-43 pathology in familial British dementia. Acta Neuropathol 2009;118 (2) 303- 311
PubMed Link to Article
Geser  FBrandmeir  NJKwong  LK  et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 2008;65 (5) 636- 641
PubMed Link to Article
Amador-Ortiz  CLin  WLAhmed  Z  et al.  TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 2007;61 (5) 435- 445
PubMed Link to Article
Hasegawa  MArai  TAkiyama  H  et al.  TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 2007;130 (pt 5) 1386- 1394
PubMed Link to Article
Arnold  SEGur  REShapiro  RM  et al.  Prospective clinicopathologic studies of schizophrenia: accrual and assessment of patients. Am J Psychiatry 1995;152 (5) 731- 737
PubMed
Talbot  KEidem  WLTinsley  CL  et al.  Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004;113 (9) 1353- 1363
PubMed Link to Article
Uryu  KNakashima-Yasuda  HForman  MS  et al.  Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 2008;67 (6) 555- 564
PubMed Link to Article
Neumann  MKwong  LKLee  EB  et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009;117 (2) 137- 149
PubMed Link to Article
Baker  MMackenzie  IRPickering-Brown  SM  et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442 (7105) 916- 919
PubMed Link to Article
Van Deerlin  VMLeverenz  JBBekris  LM  et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 2008;7 (5) 409- 416
PubMed Link to Article
Arai  TMackenzie  IRHasegawa  M  et al.  Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol 2009;117 (2) 125- 136
PubMed Link to Article
McKeith  IGDickson  DWLowe  J  et al. Consortium on DLB, Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65 (12) 1863- 1872
PubMed Link to Article
Sampathu  DMNeumann  MKwong  LK  et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 2006;169 (4) 1343- 1352
PubMed Link to Article
Yu  CEBird  TDBekris  LM  et al.  The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 2010;67 (2) 161- 170
PubMed Link to Article
Ramensky  VBork  PSunyaev  S Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30 (17) 3894- 3900
PubMed Link to Article
Mackenzie  IRFoti  DWoulfe  JHurwitz  TA Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131 (pt 5) 1282- 1293
PubMed Link to Article
Roeber  SMackenzie  IRKretzschmar  HANeumann  M TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 2008;116 (2) 147- 157
PubMed Link to Article
Neumann  MRademakers  RRoeber  SBaker  MKretzschmar  HAMackenzie  IR A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009;132 (pt 11) 2922- 2931
PubMed Link to Article
Kasai  TTokuda  TIshigami  N  et al.  Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117 (1) 55- 62
PubMed Link to Article
Steinacker  PHendrich  CSperfeld  AD  et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65 (11) 1481- 1487
PubMed Link to Article
Braak  HBraak  E Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82 (4) 239- 259
PubMed Link to Article
Kadokura  AYamazaki  TLemere  CATakatama  MOkamoto  K Regional distribution of TDP-43 inclusions in Alzheimer disease (AD) brains: their relation to AD common pathology. Neuropathology 2009;29 (5) 566- 573
PubMed Link to Article
Hu  WTJosephs  KAKnopman  DS  et al.  Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol 2008;116 (2) 215- 220
PubMed Link to Article
Lee  EBLee  VMTrojanowski  JQNeumann  M TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol 2008;115 (3) 305- 311
PubMed Link to Article
Foulds  P McAuley  EGibbons  L  et al.  TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathol 2008;116 (2) 141- 146
PubMed Link to Article
Lin  WLCastanedes-Casey  MDickson  DW Transactivation response DNA-binding protein 43 microvasculopathy in frontotemporal degeneration and familial Lewy body disease. J Neuropathol Exp Neurol 2009;68 (11) 1167- 1176
PubMed Link to Article
Caycedo  AMMiller  BKramer  JRascovsky  K Early features in frontotemporal dementia. Curr Alzheimer Res 2009;6 (4) 337- 340
PubMed Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Pathological 43-kDa Transactivation Response DNA-Binding Protein in Older Adults With and Without Severe Mental Illness
Arch Neurol.2010;67(10):1238-1250.eTable and eFigures

eTable and eFigures -Download PDF (279 KB). This file requires Adobe Reader®.

eTable. Primers for TARDBP and GRN genomic amplification and sequencing.

eFigure 1. Subpial TDP-43 pathology. Anti-TDP-43 immunohistochemistry using antiphosphorylatedS409/410 TDP-43 antibodies in schizophrenia subject with superimposeddementia. This is the same subject as shown in Figure 1a, but showing a lesser degree ofsubpial dystrophic cellular processes in the perimamydaloid cortex (e.g., arrow)demonstrating the primary subpial location of pathology (bar = 500 ìm).

eFigure 2. Partial neuronal co-localization of pathological TDP-43 and tau.a-c: TDP-43 and tau double immunofluorescence immunohistochemistry usingphosphorylation independent anti-TDP-43 antibodies (a) and paired helical filament-1antibodies (b) (merge in c) of hippocampus in a CO-M subject showing variable colocalizationof pathological tau (b) and TDP-43 (a) (merge in c) in a neuronal cytoplasmicinclusion (arrow) (bar=50ìm).
Supplemental Content

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 31

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

Users' Guides to the Medical Literature
The Genetic Blueprint