0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contribution |

Glucocerebrosidase Gene Mutations:  A Risk Factor for Lewy Body Disorders FREE

Ignacio F. Mata, PhD; Ali Samii, MD; Seth H. Schneer; John W. Roberts, MD; Alida Griffith, MD; Berta C. Leis, PhD, RN; Gerard D. Schellenberg, PhD; Ellen Sidransky, MD; Thomas D. Bird, MD; James B. Leverenz, MD; Debby Tsuang, MD, MSc; Cyrus P. Zabetian, MD, MS
[+] Author Affiliations

Author Affiliations: Department of Neurology, University of Washington School of Medicine (Drs Mata, Samii, Schellenberg, Bird, Leverenz, and Zabetian), Geriatric Research Education and Clinical Center (Drs Mata, Schellenberg, Bird, and Zabetian), Mental Illness Research Education and Clinical Center (Drs Leverenz, Tsuang, and Zabetian), and Parkinson's Disease Research Education and Clinical Center (Drs Samii, Leverenz, and Zabetian), VA Puget Sound Health Care System, Virginia Mason Medical Center (Dr Roberts), and Departments of Medicine (Drs Schellenberg and Bird), Pharmacology (Dr Schellenberg), and Psychiatry and Behavioral Sciences (Drs Leverenz and Tsuang), University of Washington, Seattle; Department of Biology, Oberlin College, Oberlin, Ohio (Mr Schneer); Booth Gardner Parkinson's Care Center, Evergreen Hospital Medical Center, Kirkland, Washington (Drs Griffith and Leis); and Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland (Dr Sidransky).


Arch Neurol. 2008;65(3):379-382. doi:10.1001/archneurol.2007.68.
Text Size: A A A
Published online

Background  Mutations in the glucocerebrosidase (GBA) gene have been reported to modify risk for Parkinson disease (PD) and dementia with Lewy bodies (DLB). However, these findings have not been consistently replicated, and most studies have had substantial methodological shortcomings.

Objective  To better assess the role of GBA variants in altering risk for Lewy body disorders.

Design  Case-control study.

Setting  Four movement disorder clinics in the Seattle, Washington, area.

Participants  Seven hundred twenty-one patients with PD, 554 healthy control subjects, and 57 patients with DLB.

Main Outcome Measures  Disease status and presence or absence of the 2 most common GBA mutations (N370S and L444P).

Results  We observed a significantly higher heterozygote frequency for the 2 mutations in patients with PD (2.9%; P <.001) and those with DLB (3.5%; P = .045) compared with control subjects (0.4%).

Conclusion  Our findings suggest that GBA mutations exert a large effect on susceptibility for Lewy body disorders at the individual level but are associated with a modest (approximately 3%) population-attributable risk in individuals of European ancestry.

Gaucher disease, the most common glycolipid storage disorder, results from a recessively inherited deficiency of the lysosomal enzyme glucocerebrosidase. Patients with Gaucher disease present with a broad range of phenotypes, but the disease is classified into 3 subtypes based on the absence (type 1) or presence (types 2 and 3) of neurologic manifestations. Although type 1 disease is traditionally considered nonneuronopathic, a small subset of patients develop parkinsonism with brainstem or diffuse Lewy body pathology.1 Furthermore, an increased incidence of parkinsonism has been reported in relatives of patients with Gaucher disease.2,3 These observations suggested that mutations in the GBA gene, which encodes glucocerebrosidase, might represent a risk factor for Lewy body disorders. Nine case-control analyses412 of Parkinson disease (PD) and 1 of dementia with Lewy bodies (DLB) have been undertaken to test this hypothesis and, although nearly all have reported a higher frequency of GBA mutations among cases, the difference has failed to reach significance (or been of marginal significance) in most studies.

Although these case-control data are intriguing, interpretation has been difficult and several criticisms have been raised. Most of the studies had adequate power to detect only large effects at the expected allele frequencies, 2 failed to include an independent control group, and in some race/ethnicity was incompletely characterized. The number of mutations assessed varied greatly, from only the 2 most common (N370S and L444P) to comprehensive screenings of the entire coding region. Finally, mutation frequencies in patients have varied several-fold among studies, even within individuals of similar ancestry. With these issues in mind, we sought to further assess the role of GBA in Lewy body disorders by examining the frequency of the N370S and L444P mutations in a large PD case-control sample of European origin and in a cohort of patients with DLB.

STUDY PARTICIPANTS

The study population included 721 patients with PD, 554 control subjects, and 57 patients with DLB. The PD group was primarily composed of a cohort of patients (n = 706) consecutively recruited at 4 movement disorder clinics in the Seattle, Washington, area. All patients with PD met clinical diagnostic criteria for PD13 as determined by a movement disorder specialist, and neuropathological confirmation was available for 1 patient. Control subjects had no history of parkinsonism or dementia (by structured interview) and were either spouses of patients with PD (n = 310) or volunteers from the local community (n = 244). Only patients with PD and control subjects of European origin were included in the study.

The DLB group was composed of 3 living patients who met revised clinical diagnostic criteria for probable DLB14 and 54 patients with dementia who met pathologic criteria for high- (n = 21) or intermediate- (n = 33) likelihood DLB.14 Patients with Lewy-related pathology confined to the amygdala were excluded from the study. Only patients with DLB of self-defined white ancestry were included in the analysis. Insufficient information was available to differentiate between patients with DLB of European vs Middle Eastern–North African origin (eg, Ashkenazi Jews).

All study participants had previously been screened for pathogenic LRRK2 mutations, and those who carried 1 or more of these variants were excluded from the study. The institutional review boards at each participating site approved the study, and all participants gave informed consent.

GENOTYPING AND DATA ANALYSIS

We genotyped N370S by TaqMan Assay (Applied Biosystems, Foster City, California) using primers 5′-GCCTTTGTCTCTTTGCCTTTGTC-3′ (forward) and 5′-GGGGTTCAGGGCAAGGTT-3′ (reverse) and probes 5′-VIC-TACCCTAGAaCCTCCTG-3′ and 5′-6FAM-TACCCTAGAgCCTCCT-3′. The L444P mutation was genotyped by sequencing a polymerase chain reaction template that spanned the 3′ half of exon 9 and the full length of exon 10 using primers 5′-CCAATTGGGTGCGTAACTTT-3′ (forward) and 5′-TAGGGAGCAGGGAGGAGAAG-3′ (reverse). L444P occurs either as an individual mutation or in cis with other variants (eg, A456P and V460V) as a recombinant allele formed by recombination between GBA and a nearby pseudogene.15

Genotype frequencies in patients and control subjects were compared by means of the Fisher exact test. Population-attributable risk was calculated using the following equation:

P(OR − 1)/1 + P(OR − 1),

where P is the prevalence of mutation carriers among control subjects and OR is the odds ratio for disease (PD or DLB).

Twenty-one of the 721 patients with PD (2.9%), 2 of the 57 patients with DLB (3.5%), and 2 of the 554 control subjects (0.4%) were heterozygous for GBA mutations N370S or L444P (Table 1). A significantly higher frequency of mutation carriers was found in the PD sample compared with the control group (odds ratio, 8.3; 95% confidence interval, 2.0-73.1; P <.001). A marginally significant overrepresentation of mutation carriers was observed among patients with DLB (odds ratio, 10.0; 95% confidence interval, 0.7-139.8; P = .045).

Table Graphic Jump LocationTable 1. Frequency of GBA Mutation Carriers Among Patients and Control Subjects

The clinical characteristics of the 21 patients with PD heterozygous for GBA mutations are given in Table 2. Most of these patients had late-onset disease (14 of 21) and reported no family history of PD (17 of 21). Five of the patients had developed substantial cognitive impairment more than 1 year after onset of parkinsonism. No significant difference was found in mean age at onset, disease duration, or sex distribution between patients with PD with and without mutations (Table 3).

Table Graphic Jump LocationTable 2. Clinical Characteristics of Patients With PD Heterozygous for GBA Mutations
Table Graphic Jump LocationTable 3. Comparison of Clinical Features by Carrier Status

The 2 patients with DLB who carried GBA mutations both had diffuse neocortical Lewy-related pathology. One carried a recombinant allele (Rec 1) that contained L444P and had a high level of concomitant Alzheimer-type pathology (Braak stage V, Consortium to Establish a Registry for Alzheimer's Disease plaque score C; intermediate-likelihood DLB). The other was heterozygous for N370S and had a low degree of Alzheimer pathology (Braak stage II, Consortium to Establish a Registry for Alzheimer's Disease plaque score A; high-likelihood DLB).

In sequencing the region flanking L444P, we identified 2 novel variants (H422T and T410T) and several intronic polymorphisms of unknown functional significance. However, we did not detect any other mutations that have been reported as pathogenic for Gaucher disease.

Our data suggest that GBA mutations might represent a significant risk factor for Lewy body disorders. However, although the effect sizes observed in our case-control sample were large (odds ratios in the 8-10 range), the frequency of mutation carriers among both the PD and DLB groups was low (Table 1). Thus, we estimate that the population-attributable risk for GBA mutations in Lewy body disorders is only approximately 3% in individuals of European ancestry (Table 1).

Most patients with PD heterozygous for GBA mutations in our cohort had sporadic, late-onset disease that was responsive to levodopa, consistent with previously published data (Table 2).4,11,12 This finding is in contrast to some parkinsonian patients with Gaucher disease in whom parkinsonism was of early onset and refractory to treatment.1

Our work has 3 major strengths compared with 6 previously published studies611 on GBA mutations in PD populations of primarily European origin. First, our study had a large sample size. A frequent observation among genetic association analyses is the initial report of a large effect in a small sample followed by more powerful studies that typically fail to reproduce the initial results or occasionally validate the effect, but at a more modest level.16 Of the 6 studies on GBA previously mentioned, the first study9 reported a mutation frequency of 14% among 57 patients with PD and 0% among 44 control samples derived from US brain banks. The 5 subsequent studies68,10,11 have observed effects of marginal or no significance, but 4 of these have included a PD cohort of fewer than 100 patients and were thus underpowered. Our study addressed this issue by using a PD cohort that exceeded the combined sample size of patients with PD across all 6 studies and suggests a potentially bona fide but more modest effect than originally reported.9

Second, our study limited the sample to individuals of European ancestry. The N370 mutation has a much higher prevalence among Ashkenazi Jews than in individuals of European origin.4,5,911 Thus, spurious associations might arise if cases and control subjects are drawn differentially from these populations.16 We collected detailed information on ancestry from patients with PD and control subjects at the time of enrollment and were thus able to account for this important confounder. In contrast, such data were largely lacking in previous studies.

Third, we included a matched control group. Some studies have failed to include a control group and have instead relied on previous estimates of GBA mutation frequencies derived indirectly from epidemiologic studies on Gaucher disease.7,8 Another derived control subjects from brain banks with minimal data available on ancestry.9 These approaches are subject to substantial bias and confounding. We used a control group screened for parkinsonism and matched closely for age, ancestry, and area of residence.

Our study also had several limitations. Although more than 200 pathogenic GBA mutations have been reported,17 we genotyped only the 2 most common ones, which together account for approximately 70% of the disease alleles in white patients with Gaucher disease (excluding Ashkenazi Jews; International Collaborative Gaucher Group Gaucher Registry, unpublished data, September 2006). Thus, we might have underestimated the true mutation frequency. The sample size of the DLB group was small, and there was insufficient information to separate individuals of European ancestry from those of other white populations. Thus, findings from our analysis of the DLB group must be interpreted with caution, but these data suggest that the remarkably high mutation frequency (23%) observed in a previous DLB sample (n = 35) might be an overestimate.8

Common variants in many genes have been nominated as risk factors for PD in populations of European origin, but arguably all but 2 (SNCA and MAPT) have later failed validation.1820 This phenomenon has engendered a healthy skepticism in evaluating newly nominated susceptibility genes, and GBA is no exception. Given the large burden of proof incumbent on candidate gene studies, our findings should not be considered definitive replication but indicate that the role of GBA in Lewy body disorders merits intensive study. This will require large-scale collaborative efforts and well-designed studies on thousands of individuals.

Correspondence: Cyrus P. Zabetian, MD, MS, Geriatric Research Education and Clinical Center S-182, VA Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108 (zabetian@u.washington.edu).

Accepted for Publication: August 20, 2007.

Author Contributions: Dr Zabetian had full access to all of the data in the study and takes responsibility for the integrity of the data analysis. Study concept and design: Mata, Schneer, Sidransky, Tsuang, and Zabetian. Acquisition of data: Mata, Samii, Schneer, Roberts, Griffith, Leis, Schellenberg, Leverenz, Tsuang, and Zabetian. Analysis and interpretation of data: Mata, Schneer, Bird, Leverenz, and Zabetian. Drafting of the manuscript: Mata, Schneer, and Zabetian. Critical revision of the manuscript for important intellectual content: Mata, Samii, Roberts, Griffith, Schellenberg, Sidransky, Bird, Leverenz, Tsuang, and Zabetian. Statistical analysis: Mata. Obtained funding: Schellenberg, Leverenz, Tsuang, and Zabetian. Administrative, technical, and material support: Mata, Samii, Schneer, Roberts, Leis, Schellenberg, Sidransky, and Zabetian. Study supervision: Mata, Leverenz, Tsuang, and Zabetian.

Financial Disclosure: None reported.

Funding/Support: This work was supported by the National Institutes of Health (National Institute of Neurological Disorders and Stroke, grant K08 NS044138, to Dr Zabetian), Department of Veterans Affairs (Merit Review Award to Dr Zabetian), and the Veterans Integrated Service Network 20 Geriatric, Mental Illness, and Parkinson's Disease Research Education and Clinical Centers.

Additional Contributions: We thank the individuals who participated in the study. Erica Martinez, BS, Galen Richards, BS, and Dora Yearout, BS, provided technical support and assistance with study participant recruitment.

Tayebi  NWalker  JStubblefield  B  et al.  Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 2003;79 (2) 104- 109
PubMed Link to Article
Goker-Alpan  OSchiffmann  RLaMarca  ME  et al.  Parkinsonism among Gaucher disease carriers. J Med Genet 2004;41 (12) 937- 940
PubMed Link to Article
Halperin  AElstein  DZimran  A Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 2006;36 (3) 426- 428
PubMed Link to Article
Aharon-Peretz  JRosenbaum  HGershoni-Baruch  R Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 2004;351 (19) 1972- 1977
PubMed Link to Article
Clark  LNNicolai  AAfridi  S  et al.  Pilot association study of the beta-glucocerebrosidase N370S allele and Parkinson's disease in subjects of Jewish ethnicity. Mov Disord 2005;20 (1) 100- 103
PubMed Link to Article
Eblan  MJNguyen  JZiegler  SG  et al.  Glucocerebrosidase mutations are also found in subjects with early-onset parkinsonism from Venezuela. Mov Disord 2006;21 (2) 282- 283
PubMed Link to Article
Eblan  MJWalker  JMSidransky  E The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 2005;352 (7) 728- 731
PubMed Link to Article
Goker-Alpan  OGiasson  BIEblan  MJ  et al.  Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 2006;67 (5) 908- 910
PubMed Link to Article
Lwin  AOrvisky  EGoker-Alpan  O  et al.  Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004;81 (1) 70- 73
PubMed Link to Article
Sato  CMorgan  ALang  AE  et al.  Analysis of the glucocerebrosidase gene in Parkinson's disease. Mov Disord 2005;20 (3) 367- 370
PubMed Link to Article
Toft  MPielsticker  LRoss  OA  et al.  Glucocerebrosidase gene mutations and Parkinson disease in the Norwegian population. Neurology 2006;66 (3) 415- 417
PubMed Link to Article
Ziegler  SGEblan  MJGutti  U  et al.  Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 2007;91 (2) 195- 200
PubMed Link to Article
Gibb  WRLees  AJ The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51 (6) 745- 752
PubMed Link to Article
McKeith  IGDickson  DWLowe  J  et al.  Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65 (12) 1863- 1872
PubMed Link to Article
Tayebi  NStubblefield  BKPark  JK  et al.  Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet 2003;72 (3) 519- 534
PubMed Link to Article
Campbell  HRudan  I Interpretation of genetic association studies in complex disease. Pharmacogenomics J 2002;2 (6) 349- 360
PubMed Link to Article
Beutler  EGelbart  TScott  CR Hematologically important mutations: Gaucher disease. Blood Cells Mol Dis 2005;35 (3) 355- 364
PubMed Link to Article
Maraganore  DMde Andrade  MElbaz  A  et al.  Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006;296 (6) 661- 670
PubMed Link to Article
Zabetian  CPHutter  CMFactor  SA  et al.  Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease. Ann Neurol 2007;62 (2) 137- 144
Link to Article
Elbaz  ANelson  LMPayami  H  et al.  Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurol 2006;5 (11) 917- 923
PubMed Link to Article

Figures

Tables

Table Graphic Jump LocationTable 1. Frequency of GBA Mutation Carriers Among Patients and Control Subjects
Table Graphic Jump LocationTable 2. Clinical Characteristics of Patients With PD Heterozygous for GBA Mutations
Table Graphic Jump LocationTable 3. Comparison of Clinical Features by Carrier Status

References

Tayebi  NWalker  JStubblefield  B  et al.  Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 2003;79 (2) 104- 109
PubMed Link to Article
Goker-Alpan  OSchiffmann  RLaMarca  ME  et al.  Parkinsonism among Gaucher disease carriers. J Med Genet 2004;41 (12) 937- 940
PubMed Link to Article
Halperin  AElstein  DZimran  A Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 2006;36 (3) 426- 428
PubMed Link to Article
Aharon-Peretz  JRosenbaum  HGershoni-Baruch  R Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 2004;351 (19) 1972- 1977
PubMed Link to Article
Clark  LNNicolai  AAfridi  S  et al.  Pilot association study of the beta-glucocerebrosidase N370S allele and Parkinson's disease in subjects of Jewish ethnicity. Mov Disord 2005;20 (1) 100- 103
PubMed Link to Article
Eblan  MJNguyen  JZiegler  SG  et al.  Glucocerebrosidase mutations are also found in subjects with early-onset parkinsonism from Venezuela. Mov Disord 2006;21 (2) 282- 283
PubMed Link to Article
Eblan  MJWalker  JMSidransky  E The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med 2005;352 (7) 728- 731
PubMed Link to Article
Goker-Alpan  OGiasson  BIEblan  MJ  et al.  Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 2006;67 (5) 908- 910
PubMed Link to Article
Lwin  AOrvisky  EGoker-Alpan  O  et al.  Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004;81 (1) 70- 73
PubMed Link to Article
Sato  CMorgan  ALang  AE  et al.  Analysis of the glucocerebrosidase gene in Parkinson's disease. Mov Disord 2005;20 (3) 367- 370
PubMed Link to Article
Toft  MPielsticker  LRoss  OA  et al.  Glucocerebrosidase gene mutations and Parkinson disease in the Norwegian population. Neurology 2006;66 (3) 415- 417
PubMed Link to Article
Ziegler  SGEblan  MJGutti  U  et al.  Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 2007;91 (2) 195- 200
PubMed Link to Article
Gibb  WRLees  AJ The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51 (6) 745- 752
PubMed Link to Article
McKeith  IGDickson  DWLowe  J  et al.  Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65 (12) 1863- 1872
PubMed Link to Article
Tayebi  NStubblefield  BKPark  JK  et al.  Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet 2003;72 (3) 519- 534
PubMed Link to Article
Campbell  HRudan  I Interpretation of genetic association studies in complex disease. Pharmacogenomics J 2002;2 (6) 349- 360
PubMed Link to Article
Beutler  EGelbart  TScott  CR Hematologically important mutations: Gaucher disease. Blood Cells Mol Dis 2005;35 (3) 355- 364
PubMed Link to Article
Maraganore  DMde Andrade  MElbaz  A  et al.  Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006;296 (6) 661- 670
PubMed Link to Article
Zabetian  CPHutter  CMFactor  SA  et al.  Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease. Ann Neurol 2007;62 (2) 137- 144
Link to Article
Elbaz  ANelson  LMPayami  H  et al.  Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurol 2006;5 (11) 917- 923
PubMed Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 73

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles