0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contribution |

Leisure Activity and Cognitive Decline in Incident Alzheimer Disease FREE

Elizabeth P. Helzner, PhD; Nikolaos Scarmeas, MD; Stephanie Cosentino, PhD; Florence Portet, MD; Yaakov Stern, PhD
[+] Author Affiliations

Author Affiliations: Gertrude H. Sergievsky Center (Drs Helzner, Scarmeas, Cosentino, and Stern), Departments of Neurology (Drs Scarmeas and Stern) and Psychiatry (Dr Stern), and Taub Institute for Research in Alzheimer's Disease and the Aging Brain (Drs Scarmeas and Stern), Columbia University College of Physicians and Surgeons, New York, New York; and Memory Research Resource Center for Alzheimer's Disease, Neurology B Department, Institut National de la Sante et de la Recherche Medicale, Montpellier Hospital, Montpellier, France (Dr Portet).


Arch Neurol. 2007;64(12):1749-1754. doi:10.1001/archneur.64.12.1749.
Text Size: A A A
Published online

Background  High rates of leisure activity have been associated with reduced risk of Alzheimer disease (AD).

Objective  To determine whether prediagnosis leisure activity modifies the rate of cognitive decline in patients with AD.

Design  Inception cohort followed up longitudinally for a mean of 5.3 years (up to 13.9 years).

Setting  Urban community.

Participants  A total of 283 patients with incident AD (mean age, 79 years; 56.2% Hispanic and 31.1% African American).

Main Outcome Measures  Change in a composite cognitive score from diagnosis on and during the entire study follow-up.

Results  In multivariate-adjusted generalized estimating equation models of postdiagnosis change (n = 133), each leisure activity was associated with an additional yearly decline of 0.005 of a z-score unit in cognitive score (P = .17). In models expanded to include cognitive change during study follow-up, including evaluations before and after diagnosis (n = 283), each activity was associated with an additional yearly decline of 0.005 of a z-score unit in cognitive score (P = .03). The association was strongest for intellectual activities.

Conclusions  Greater participation in prediagnosis leisure activities, especially intellectual activities, was associated with faster cognitive decline, supporting the hypothesis that the disease course in AD may vary as a function of cognitive reserve.

Figures in this Article

High rates of leisure activity have been associated with reduced risk of Alzheimer disease (AD).15 Along with premorbid IQ, educational level, and occupational attainment, leisure activity may contribute to cognitive reserve (CR).6,7 Those with greater CR may tolerate a greater burden of Alzheimer neuropathologic conditions before clinical disease expression; however, relatively advanced neuropathologic disease by the time of diagnosis may result in faster disease progression.8,9 Proxies of higher CR, including higher educational level,8,10,11 higher occupational attainment,8,12 and higher premorbid reading activity,13 have been associated with faster cognitive decline in patients with dementia, although some studies14,15 found no association.

The Washington Heights-Inwood Columbia Aging Project (WHICAP) is a community-based study of cognitive aging that began in 1989. An earlier WHICAP investigation4 found that high rates of leisure participation were associated with lower AD incidence. The current investigation assesses the influence of leisure on the rate of cognitive decline among those who developed AD during study follow-up (ie, incident cases only). We hypothesized that higher prediagnosis leisure activity would be associated with faster cognitive decline, consistent with the hypothesis that leisure activity contributes to CR.

SAMPLE

Participants in WHICAP were recruited in 2 similar cohorts. Recruitment began in 1992. The geographic study area was the 14 census tracts in Manhattan in New York, between (approximately) 155th and 181st streets. Lists of all Medicare or Medicaid beneficiaries in this area were obtained from the Health Care Financing Administration (now called Centers for Medicare & Medicaid Services). Potential participants were then drawn by systematic random sampling into 1 of 6 strata formed based on ethnicity (Hispanic, non-Hispanic black, and non-Hispanic white) and age (65-74 and ≥75 years). A total of 2125 participants were interviewed at baseline. A “refreshment” cohort of 2183 additional participants was formed in 1999 using generally similar methods. The main exceptions were as follows: new lists of beneficiaries were obtained but those drawn into the 1992 cohort were excluded, patients who reported being diagnosed as having dementia while arranging for the initial evaluation were excluded, and the study area was extended to the south and north to encompass all of Manhattan north of (approximately) 145th Street.

From the combined cohorts, 388 individuals developed AD during study follow-up. Of these, 318 had available follow-up assessments (15.0% of those without follow-up had not been seen for the next assessment wave). A total of 283 had prediagnosis leisure data and at least 2 cognitive assessments and were included in the analysis; of these, 133 had available postdiagnosis follow-up. Excluded patients with AD were older than the analysis sample (P = .04) but did not significantly differ by sex, race, APOE ε4 status, educational level, leisure participation, or baseline cognitive score. The study was approved by the Columbia University institutional review board, and written informed consent was obtained from all participants.

ASSESSMENT OF INCIDENT AD

Diagnoses of AD were based on standardized, physician-administered physical and neurologic examinations along with a standardized neuropsychological battery. All assessments were administered at baseline and at subsequent follow-ups (roughly every 18 months). Assessments were conducted in English or Spanish based on participant preference. All available ancillary information (medical records, imaging studies, and evidence of social or occupational function deficits) was considered. Leisure information was not used in diagnosis.

Dementia diagnoses were made at consensus conferences attended by neurologists and neuropsychologists based on Diagnostic and Statistical Manual of Mental Disorders (Third Edition Revised) criteria. Probable or possible AD was diagnosed according to the criteria of the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer Disease and Related Disorders Association.

OUTCOME MEASURES

The primary outcome was rate of change in a composite measure of cognition. A complete neuropsychological battery16 was administered, with tests that assessed 5 cognitive domains: (1) memory: total and delayed recall of the Selective Reminding Test17 and the recognition component of the multiple-choice version of the Benton Visual Retention Test18; (2) abstract reasoning: Wechsler Adult Intelligence Scale Revised similarities subtest19 and the identities and oddities subtest of the Dementia Rating Scale20; (3) visual-spatial: 5 items from the Rosen Drawing Test21 and the matching component of the multiple-choice version of the Benton Visual Retention Test18; (4) language: 15-item Boston Naming Test,22 the 8 high-probability items from the repetition subtest of the Boston Diagnostic Aphasia Examination,22 and the first 6 items of the Boston Diagnostic Aphasia Examination comprehension subtest; and (5) executive speed: average scores for phonemic fluency assessed by the Controlled Oral Word Association Test and category fluency (animals, food, and clothing) mean scores.23

The composite measure was derived as follows: the 12 raw scores were transformed into z scores based on means and standard deviations for each test calculated from baseline scores of 272 control subjects who were matched according to age, education level, and ethnicity to identify patients with incident AD. Individual test z scores for participants with dementia were averaged to create a z score for each cognitive domain. If fewer than half of the test z scores were missing for a given domain, the domain score was calculated with the available data. If more than half of the tests were missing, the domain score was considered missing and was excluded. The composite score was the average of the 5 domain scores, with missing data treated in the manner previously described.

PREDICTOR VARIABLES

The primary predictor variable was self-reported leisure activity. Although leisure was measured at multiple visits, the first available assessment was used for 2 reasons: (1) to increase response validity, since participants did not have dementia at this visit, and (2) to better approximate long-standing leisure habits (to better approximate CR). Participation in the previous month in 13 activities was considered in 4 categories according to previous work4: (1) intellectual: reading magazines, newspapers, or books; going to classes; and playing cards, games, or bingo; (2) social: doing unpaid volunteer work; going to a club or center; going to movies, restaurants, or sporting events; attending church, synagogue, or temple; visiting friends or relatives; and being visited by friends or relatives; (3) physical: physical conditioning and walking for pleasure or excursion; and (4) other: knitting, music, or other hobby and watching television or listening to the radio. Participation in each activity was scored 1 point and summed to derive the total leisure activity score (range, 0-13). High vs low rates of leisure participation were based on a median split of 6 activities.4

We also considered factors that might influence cognitive decline or leisure participation. Baseline medical comorbidity was assessed with a modified24 Charlson Comorbidity Index.25 Myocardial infarction, congestive heart failure, peripheral vascular disease, hypertension, chronic obstructive pulmonary disease, arthritis, gastrointestinal disease, mild liver disease, and diabetes mellitus were weighted 1; chronic renal disease and systemic malignancy were weighted 2. History of stroke was considered separately. The APOE genotype was determined using established methods26 and categorized based on the presence of at least 1 ε4 allele. We also considered ethnicity (non-Hispanic white, non-Hispanic black, and Hispanic), sex, education level, baseline cognitive performance, and study cohort.

STATISTICAL ANALYSES

Baseline characteristics by leisure category (low or high) were compared using χ2 or t tests. Generalized estimating equations were used to examine influence of leisure on rates of postdiagnosis cognitive change. By treating each patient's repeated measures as a cluster, the generalized estimating equations account for the probable correlation of characteristics measured in the same individual over time. In the initial model, the dependent variable was the composite cognitive score. Predictor variables were total leisure score, time (years from diagnosis), and a leisure × time interaction. A significant leisure effect would suggest a difference in cognitive performance at diagnosis associated with each prediagnosis leisure activity. A significant time effect would suggest a change in cognitive scores over time (regardless of leisure score). A significant interaction term would suggest differential rates of cognitive change as a function of leisure.

Subsequently, multivariate-adjusted models were constructed. Since low leisure activity measured closer to diagnosis could reflect early dementia, we controlled for time between the leisure assessment and dementia diagnosis (leisure-to-diagnosis time) in all models. Models also included baseline cognitive score, ethnicity, educational level, sex, study cohort, comorbidity index, and stroke history. All covariates were simultaneously introduced into models. A separate model was built for each leisure category (total leisure, intellectual, social, physical, and other activities).

In supplementary analyses, we examined cognitive decline during the entire study follow-up (before and after diagnosis). This was done to more fully capture the natural course of the disease, since AD-associated neuropathologic conditions and subtle cognitive decline are present many years before diagnosis.27,28 Also, in this sample, rates of cognitive decline were similar before and after AD diagnosis.28 In exploratory analyses, we examined leisure-associated decline within APOE ε4 strata.

CHARACTERISTICS OF THE SAMPLE

At diagnosis, most participants (89%) had a clinical dementia rating of 1.0 (mild).29 Leisure participation did not vary by education level, sex, ethnicity, or age (at baseline or diagnosis). Higher leisure activity was associated with higher baseline cognition, fewer medical comorbidities, and lower stroke prevalence (Table 1). Treating leisure as a continuous variable (number of activities), leisure activity was positively correlated with years of education (r = 0.004; P = .95), and intellectual leisure activity examined separately was positively correlated with years of education (r = 0.07; P = .26), although these findings did not reach statistical significance.

Table Graphic Jump LocationTable 1. Selected Characteristics Overall and by Leisure Participation at Baseline: Washington Heights-Inwood Columbia Aging Project

The mean ± SD follow-up time between baseline and last cognitive assessments was 5.3 ± 3.1 years (range, 1.0-13.9 years), with a mean ± SD of 3.6 ± 1.5 follow-up assessments (range, 2-5). The mean ± SD time between leisure assessment and AD diagnosis was 4.1 ± 2.8 years (range, 1.0-13.1 years). Those with postdiagnosis follow-up (n = 133) had a mean ± SD postdiagnosis follow-up of 3.3 ± 2.1 years (range, 1.1-9.8 years) and a mean ± SD of 2.4 ± 0.8 postdiagnosis assessments (range, 1-5).

COGNITIVE DECLINE OVER TIME

As expected in this sample with dementia, the composite cognitive score declined during study follow-up. In a generalized estimating equations model, the β associated with the composite cognitive score was −.09 (P <.001), indicating a 9% decline per year. Rates of decline were similar before (β = −.08; P <.001) and after (β = −.09; P <.001) AD onset. Quadratic terms for time were added to these models to test whether cognitive change was nonlinear. These terms were nonsignificant and thus were not included in the final models.

LEISURE ACTIVITY AND COGNITIVE DECLINE

The primary models examined cognitive change after diagnosis and were limited to 133 participants. Higher total leisure scores were associated with faster cognitive decline, although this effect did not reach statistical significance (β = −.005; P = .17). Leisure categories (physical, social, intellectual, and other) were subsequently examined separately. After multivariate adjustment, no statistically significant effects by leisure category were seen (Table 2).

Table Graphic Jump LocationTable 2. Separate Multivariate-Adjusted Generalized Estimating Equation Models That Measured Leisure-Associated Decline in Cognitive Functiona
SUPPLEMENTARY ANALYSES

Models that examined cognitive decline during the entire study follow-up (before and after diagnosis) included 283 participants. In this much larger sample, each leisure activity was associated with an additional yearly decline of 0.005 of a z-score unit (P = .03) after multivariate adjustment. Figure 1 illustrates predicted decline in composite cognitive score based on generalized estimating equations by tertile of baseline leisure activity. In category-specific models, only intellectual activity was associated with faster decline, with an additional decline of 0.03 of a z-score unit per activity per year (P <.001) (Table 2).

Place holder to copy figure label and caption
Figure 1.

Predicted decline in composite cognitive score based on generalized estimating equations by tertile of baseline leisure activity. Time 0 indicates diagnosis visit. Negative times reflect prediagnosis visits.

Graphic Jump Location
EXPLORATORY ANALYSES
APOE ε4–Stratified Models

Since APOE ε4 has been associated with differential rates of cognitive decline, we repeated models after stratifying by ε4 status. Because of incomplete APOE data, we were underpowered to test this association using only postdiagnosis cognitive change; thus, these models measured change during the entire study. Higher total leisure activity was associated with faster cognitive decline among non-ε4 carriers only (β = −.007, P = .04; among ε4 carriers: β = .003, P = .46; fully adjusted models).

Models of Leisure-Associated Change in Specific Cognitive Domains

We performed the analysis again with the total leisure score as the primary predictor, examining change in specific cognitive domains. In models of postdiagnosis change, differential rates of change were seen for the executive speed domain (β = −.10; P = .03) but not in other domains (memory: β = −.004, P = .47; visuospatial: β = −.003, P = .58; abstract reasoning: β = −.001, P = .82; language: β = −.005, P = .30). In models of cognition from baseline on, differential rates of change were seen in the memory (β = −.009; P = .05) and executive speed (β = −.009; P = .02) domains but not the others (visuospatial: β = −.004, P = .42; abstract reasoning: β = −.001, P = .73; language: β = −.007; P = .27).

To our knowledge, this study is the first to examine the influence of premorbid leisure activity on cognitive decline among incident AD cases. In models of postdiagnosis cognitive change, leisure categories were associated with faster cognitive decline, although the effect did not reach statistical significance. Supplementary analyses that measured cognitive decline during the entire study follow-up, potentially capturing earlier disease stages and more than doubling the sample size, revealed that higher total leisure and intellectual activity (but not social or physical activity) was associated with significantly faster cognitive decline, even after multivariate adjustment.

We hypothesized that leisure activity serves as a proxy of CR. People with high CR may have more efficient neural networks or may use alternate networks more effectively after neurologic insult. These people theoretically compensate better for AD-associated neuropathologic conditions, allowing for a longer period of normal function before diagnosis. Thus, those with higher CR may have lower or delayed AD incidence. However, since neuropathologic conditions are relatively advanced by diagnosis,24,3032 they may have a faster subsequent disease course.6

Support for this theory comes from studies that demonstrated faster cognitive decline among patients with AD with higher education levels8,10,24 and higher premorbid reading activity.13 Furthermore, imaging studies suggest that CR may modulate the relationship between neuropathologic disease and clinical manifestations. Adjusting for clinical severity, more highly educated patients with AD tolerated greater cerebral blood flow deficits (an indirect measure of AD),30 and patients with AD with higher occupational attainment and higher premorbid intelligence demonstrated lower cerebral metabolism.31,32 In our earlier positron emission tomographic study of patients with AD, those with a high leisure activity rate tolerated greater cerebral blood flow deficits (suggesting greater neuropathologic disease), even adjusted for disease severity, educational level, and IQ.24 Our current findings are consistent with imaging results, suggesting that higher premorbid leisure activity is linked to more advanced neuropathologic disease, resulting in faster subsequent progression. Our findings also mirror the recent results regarding educational level from this cohort,24 despite the lack of correlation between leisure activity and educational attainment, suggesting that leisure activity may represent an aspect of CR distinct from education level. A theoretical model of leisure as a proxy of CR is presented in Figure 2.

Place holder to copy figure label and caption
Figure 2.

Theoretical model to explain more rapid cognitive decline in patients with higher leisure activity rates. People with high rates of leisure activity are protected in that decline starts later, as indicated by previous studies. However, once decline starts, it follows a more precipitous course in the high leisure activity rate group. The highlighted area corresponds to the period examined in this study. Note that decline has begun even before diagnosis.

Graphic Jump Location

We found no association between physical activity and cognitive decline in patients with AD. The mental stimulation associated with intellectual and social activities may influence CR differently than physical activity. Alternatively, our negative findings with physical activity may be due to our admittedly limited physical activity assessment.

Exploratory models stratified by APOE ε4 status revealed that leisure-associated cognitive decline during the entire study follow-up was more pronounced among non-ε4 carriers, suggesting that the effect of APOE ε4 may override any contributing effect of leisure on cognitive decline among carriers.

A major strength of this study is that the sample was limited to cases of incident AD, allowing us to capture more of the disease course, including the earlier stages. Other strengths include the high quality of our diagnostic procedure and our use of multiple cognitive assessments to provide more accurate slope calculations. Finally, our ethnically diverse, community-based sample increases generalizability of our findings.

We acknowledge several limitations. Although we used the earliest available leisure measurement, this was on average only 4 years before diagnosis. If early dementia reduced leisure activity, this might work against our findings. We attempted to account for this by controlling for time between the leisure assessment and dementia incidence for each participant. In future investigations, it would be better to assess leisure earlier in life. Unlike others,5 we did not measure frequency and intensity of activities, possibly reducing the sensitivity of our leisure assessment. Finally, we cannot exclude the possibility that leisure acts as a surrogate for some other factor not included in our models that is truly associated with faster cognitive decline. Our results add to the growing body of evidence that disease course in AD may vary as a function of CR.

Correspondence: Yaakov Stern, PhD, Gertrude H. Sergievsky Center, 622 W 168th St, PH 19th Floor, New York, NY 10032 (ys11@columbia.edu).

Accepted for Publication: February 1, 2007.

Author Contributions:Study concept and design: Helzner, Scarmeas, and Stern. Acquisition of data: Scarmeas and Stern. Analysis and interpretation of data: Helzner, Scarmeas, Cosentino, Portet, and Stern. Drafting of the manuscript: Helzner. Critical revision of the manuscript for important intellectual content: Scarmeas, Cosentino, Portet, and Stern. Statistical analysis: Helzner, Scarmeas, and Cosentino. Study supervision: Scarmeas and Stern.

Financial Disclosure: None reported.

Funding/Support: This work was supported in part by grants P01-AG07232 and RR00645 from the National Institute on Aging and grant 5T32NS007153-22 from the National Institute of Neurological Disorders and Stroke.

Role of the Sponsor: The funding bodies had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Additional Contribution: Nicole Schupf, PhD, provided a thoughtful review of the manuscript.

Fabrigoule  CLetenneur  LDartigues  JF  et al.  Social and leisure activities and risk of dementia: a prospective longitudinal study. J Am Geriatr Soc 1995;43 (5) 485- 490
PubMed
Wang  HXKarp  AWinblad  BFratiglioni  L Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen Project. Am J Epidemiol 2002;155 (12) 1081- 1087
PubMed Link to Article
Wilson  RSBennett  DABienias  JL  et al.  Cognitive activity and incident AD in a population-based sample of older persons. Neurology 2002;59 (12) 1910- 1914
PubMed Link to Article
Scarmeas  NLevy  GTang  MXManly  JStern  Y Influence of leisure activity on the incidence of Alzheimer's Disease. Neurology 2001;57 (12) 2236- 2242
PubMed Link to Article
Verghese  JLipton  RBKatz  MJ  et al.  Leisure activities and the risk of dementia in the elderly. N Engl J Med 2003;348 (25) 2508- 2516
PubMed Link to Article
Stern  Y What is cognitive reserve? theory and research application of the reserve concept. J Int Neuropsychol Soc 2002;8 (3) 448- 460
PubMed Link to Article
Scarmeas  NStern  Y Cognitive reserve: implications for diagnosis and prevention of Alzheimer's disease. Curr Neurol Neurosci Rep 2004;4 (5) 374- 380
PubMed Link to Article
Stern  YAlbert  STang  MXTsai  WY Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 1999;53 (9) 1942- 1947
PubMed Link to Article
Whalley  LJDeary  IJAppleton  CLStarr  JM Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 2004;3 (4) 369- 382
PubMed Link to Article
Teri  LMcCurry  SMEdland  SDKukull  WALarson  EB Cognitive decline in Alzheimer's disease: a longitudinal investigation of risk factors for accelerated decline. J Gerontol A Biol Sci Med Sci 1995;50AM49- M55
Link to Article
Rasmusson  DXCarson  KABrookmeyer  RKawas  CBrandt  J Predicting rate of cognitive decline in probable Alzheimer's disease. Brain Cogn 1996;31 (2) 133- 147
PubMed Link to Article
Wilson  RSLi  YAggarwal  NT  et al.  Education and the course of cognitive decline in Alzheimer disease. Neurology 2004;63 (7) 1198- 1202
PubMed Link to Article
Wilson  RSBennett  DAGilley  DWBeckett  LABarnes  LLEvans  DA Premorbid reading activity and patterns of cognitive decline in Alzheimer disease. Arch Neurol 2000;57 (12) 1718- 1723
PubMed Link to Article
Haxby  JVRaffaele  KGillette  JSchapiro  MBRapoport  SI Individual trajectories of cognitive decline in patients with dementia of the Alzheimer type. J Clin Exp Neuropsychol 1992;14 (4) 575- 592
PubMed Link to Article
Bowler  JVMunoz  DGMerskey  HHachinski  V Factors affecting the age of onset and rate of progression of Alzheimer's disease. J Neurol Neurosurg Psychiatry 1998;65 (2) 184- 190
PubMed Link to Article
Stern  YAndrews  HPittman  J  et al.  Diagnosis of dementia in a heterogenous population: development of a neuropsychological paradigm-based diagnosis of dementia and quantified correction for the effects of education. Arch Neurol 1992;49 (5) 453- 460
PubMed Link to Article
Buschke  HFuld  PA Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology 1974;24 (11) 1019- 1025
PubMed Link to Article
Benton  A The Visual Retention Test.  New York, NY: The Psychological Corp; 1955
Wechsler  D Wechsler Adult Intelligence Scale Revised.  New York, NY: The Psychological Corp; 1981
Mattis  S Mental status examination for organic mental syndrome in the elderly patient.  In: Bellak  L, ed. Geriatric Psychiatry. New York, NY: Grune & Stratton; 1976:77-121
Rosen  WG The Rosen Drawing Test.  Bronx, NY: Veterans Administration Medical Center; 1981
Goodglass  H The Assessment of Aphasia and Related Disorders. 2nd ed. Philadelphia, PA: Lea & Febiger; 1983
Benton  AL Manual for the Multilingual Aphasia Examination. 3rd ed. Iowa City, IA: AJA Associates Inc; 1994
Scarmeas  NAlbert  MBrandt  J  et al.  Motor signs predict poor outcomes in Alzheimer disease. Neurology 2005;64 (10) 1696- 1703
PubMed Link to Article
Charlson  MEPompei  PAles  KLMacKenzie  CR A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40 (5) 373- 383
PubMed Link to Article
Hixson  JEVernier  DT Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990;31 (3) 545- 548
PubMed
Elias  MFBeiser  AWolf  PAAu  RWhite  RFD’Agostino  RB The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch Neurol 2000;57 (6) 808- 813
PubMed Link to Article
Scarmeas  NAlbert  SMManly  JJStern  Y Education and rates of cognitive decline in incident Alzheimer's disease. J Neurol Neurosurg Psychiatry 2006;77 (3) 308- 316
PubMed Link to Article
Morris  JC The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43 (11) 2412- 2414
PubMed Link to Article
Stern  YAlexander  GEProhovnik  IMayeux  R Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer's disease. Ann Neurol 1992;32 (3) 371- 375
PubMed Link to Article
Stern  YAlexander  GEProhovnik  I  et al.  Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer's disease pathology. Neurology 1995;45 (1) 55- 60
PubMed Link to Article
Alexander  GEFurey  MLGrady  CL  et al.  Association of premorbid intellectual function with cerebral metabolism in Alzheimer's disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 1997;154 (2) 165- 172
PubMed

Figures

Place holder to copy figure label and caption
Figure 1.

Predicted decline in composite cognitive score based on generalized estimating equations by tertile of baseline leisure activity. Time 0 indicates diagnosis visit. Negative times reflect prediagnosis visits.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Theoretical model to explain more rapid cognitive decline in patients with higher leisure activity rates. People with high rates of leisure activity are protected in that decline starts later, as indicated by previous studies. However, once decline starts, it follows a more precipitous course in the high leisure activity rate group. The highlighted area corresponds to the period examined in this study. Note that decline has begun even before diagnosis.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Selected Characteristics Overall and by Leisure Participation at Baseline: Washington Heights-Inwood Columbia Aging Project
Table Graphic Jump LocationTable 2. Separate Multivariate-Adjusted Generalized Estimating Equation Models That Measured Leisure-Associated Decline in Cognitive Functiona

References

Fabrigoule  CLetenneur  LDartigues  JF  et al.  Social and leisure activities and risk of dementia: a prospective longitudinal study. J Am Geriatr Soc 1995;43 (5) 485- 490
PubMed
Wang  HXKarp  AWinblad  BFratiglioni  L Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen Project. Am J Epidemiol 2002;155 (12) 1081- 1087
PubMed Link to Article
Wilson  RSBennett  DABienias  JL  et al.  Cognitive activity and incident AD in a population-based sample of older persons. Neurology 2002;59 (12) 1910- 1914
PubMed Link to Article
Scarmeas  NLevy  GTang  MXManly  JStern  Y Influence of leisure activity on the incidence of Alzheimer's Disease. Neurology 2001;57 (12) 2236- 2242
PubMed Link to Article
Verghese  JLipton  RBKatz  MJ  et al.  Leisure activities and the risk of dementia in the elderly. N Engl J Med 2003;348 (25) 2508- 2516
PubMed Link to Article
Stern  Y What is cognitive reserve? theory and research application of the reserve concept. J Int Neuropsychol Soc 2002;8 (3) 448- 460
PubMed Link to Article
Scarmeas  NStern  Y Cognitive reserve: implications for diagnosis and prevention of Alzheimer's disease. Curr Neurol Neurosci Rep 2004;4 (5) 374- 380
PubMed Link to Article
Stern  YAlbert  STang  MXTsai  WY Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 1999;53 (9) 1942- 1947
PubMed Link to Article
Whalley  LJDeary  IJAppleton  CLStarr  JM Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 2004;3 (4) 369- 382
PubMed Link to Article
Teri  LMcCurry  SMEdland  SDKukull  WALarson  EB Cognitive decline in Alzheimer's disease: a longitudinal investigation of risk factors for accelerated decline. J Gerontol A Biol Sci Med Sci 1995;50AM49- M55
Link to Article
Rasmusson  DXCarson  KABrookmeyer  RKawas  CBrandt  J Predicting rate of cognitive decline in probable Alzheimer's disease. Brain Cogn 1996;31 (2) 133- 147
PubMed Link to Article
Wilson  RSLi  YAggarwal  NT  et al.  Education and the course of cognitive decline in Alzheimer disease. Neurology 2004;63 (7) 1198- 1202
PubMed Link to Article
Wilson  RSBennett  DAGilley  DWBeckett  LABarnes  LLEvans  DA Premorbid reading activity and patterns of cognitive decline in Alzheimer disease. Arch Neurol 2000;57 (12) 1718- 1723
PubMed Link to Article
Haxby  JVRaffaele  KGillette  JSchapiro  MBRapoport  SI Individual trajectories of cognitive decline in patients with dementia of the Alzheimer type. J Clin Exp Neuropsychol 1992;14 (4) 575- 592
PubMed Link to Article
Bowler  JVMunoz  DGMerskey  HHachinski  V Factors affecting the age of onset and rate of progression of Alzheimer's disease. J Neurol Neurosurg Psychiatry 1998;65 (2) 184- 190
PubMed Link to Article
Stern  YAndrews  HPittman  J  et al.  Diagnosis of dementia in a heterogenous population: development of a neuropsychological paradigm-based diagnosis of dementia and quantified correction for the effects of education. Arch Neurol 1992;49 (5) 453- 460
PubMed Link to Article
Buschke  HFuld  PA Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology 1974;24 (11) 1019- 1025
PubMed Link to Article
Benton  A The Visual Retention Test.  New York, NY: The Psychological Corp; 1955
Wechsler  D Wechsler Adult Intelligence Scale Revised.  New York, NY: The Psychological Corp; 1981
Mattis  S Mental status examination for organic mental syndrome in the elderly patient.  In: Bellak  L, ed. Geriatric Psychiatry. New York, NY: Grune & Stratton; 1976:77-121
Rosen  WG The Rosen Drawing Test.  Bronx, NY: Veterans Administration Medical Center; 1981
Goodglass  H The Assessment of Aphasia and Related Disorders. 2nd ed. Philadelphia, PA: Lea & Febiger; 1983
Benton  AL Manual for the Multilingual Aphasia Examination. 3rd ed. Iowa City, IA: AJA Associates Inc; 1994
Scarmeas  NAlbert  MBrandt  J  et al.  Motor signs predict poor outcomes in Alzheimer disease. Neurology 2005;64 (10) 1696- 1703
PubMed Link to Article
Charlson  MEPompei  PAles  KLMacKenzie  CR A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40 (5) 373- 383
PubMed Link to Article
Hixson  JEVernier  DT Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990;31 (3) 545- 548
PubMed
Elias  MFBeiser  AWolf  PAAu  RWhite  RFD’Agostino  RB The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch Neurol 2000;57 (6) 808- 813
PubMed Link to Article
Scarmeas  NAlbert  SMManly  JJStern  Y Education and rates of cognitive decline in incident Alzheimer's disease. J Neurol Neurosurg Psychiatry 2006;77 (3) 308- 316
PubMed Link to Article
Morris  JC The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43 (11) 2412- 2414
PubMed Link to Article
Stern  YAlexander  GEProhovnik  IMayeux  R Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer's disease. Ann Neurol 1992;32 (3) 371- 375
PubMed Link to Article
Stern  YAlexander  GEProhovnik  I  et al.  Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer's disease pathology. Neurology 1995;45 (1) 55- 60
PubMed Link to Article
Alexander  GEFurey  MLGrady  CL  et al.  Association of premorbid intellectual function with cerebral metabolism in Alzheimer's disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 1997;154 (2) 165- 172
PubMed

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 26

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Quick Reference

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Supplemental Content