0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contribution |

Clinical Implications of Splenium Magnetic Resonance Imaging Signal Changes FREE

Michael J. Doherty, MD; Sumie Jayadev, MD; Nathaniel F. Watson, MD; Ravi S. Konchada, MD; Dan K. Hallam, MD
[+] Author Affiliations

Author Affiliations: Departments of Neurology (Drs Doherty, Jayadev, and Watson) and Radiology (Drs Konchada and Hallam), The University of Washington, and the Swedish Epilepsy Center (Dr Doherty), Seattle.


Arch Neurol. 2005;62(3):433-437. doi:10.1001/archneur.62.3.433.
Text Size: A A A
Published online

Background  Magnetic resonance imaging (MRI) may show discrete splenium abnormalities; however, the implications of this radiologic finding are unclear.

Objective  To describe causes, clinical presentations, and prognoses of midline splenium changes evident on MRI.

Design  Retrospective case series.

Setting  Teaching hospital.

Patients  Medical records of 9 patients with MRI-noted splenium changes were studied; 60 additional published cases were accessed.

Interventions  Sixty-nine cases were reviewed.

Main Outcome Measures  Clinical and imaging findings, causes, and prognosis.

Results  Confusion (35 patients), ataxia (25 patients), and recent seizure (23 patients) were common. Causes included alcohol use, infections, hypoglycemia, trauma, salt abnormalities, and seizure. Twenty-eight patients had complete resolution, 23 improved, and 1 died. Diffusion-weighted imaging showed splenium abnormalities the best. Eleven of 12 patients showed decrease in apparent diffusion coefficient. Most improved clinically, as did their subsequent MRI studies.

Conclusions  Midline splenium changes are commonly seen on MRI diffusion-weighted imaging sequences. Multiple causes can result in splenium changes. Physicians should evaluate for glucose and electrolyte abnormalities, seizure risk, ongoing infectious or parainfectious process, and traumatic causes.

Figures in this Article

Magnetic resonance imaging (MRI) studies suggest splenium injury is common, reversible, and associated with multiple origins and presentations (Table 1); however, the implications of this radiologic finding are unclear. In this series of MRI-evident splenium injuries, causes are recorded with clinical findings and outcomes. We evaluate records of patients with midline splenium changes incidentally noted on brain MRI to determine if they share a characteristic presentation or common cause. The results are discussed and evaluation strategies proposed.

Table Graphic Jump LocationTable 1. Causes Associated With Splenium Damage

This retrospective case series study was performed in a teaching hospital. Using MEDLINE keywords splenium and MRI, we accessed and reviewed published cases of splenium changes. Studies in which radiologic changes were markedly asymmetric and extended beyond the splenium, as seen with vascular infarction or malignancy, were not studied. Symmetric, bilateral involvement was not excluded. Clinical findings and outcomes were collected. No statistical hypothesis testing occurred.

Medical records of 9 patients along with 60 published cases with MRI splenium changes were studied. Of 69 patients evaluated, 52 had clinical outcomes recorded: 28 had complete resolution, 23 improved, and 1 died. Causes are given in Table 1. The vignettes and imaging of unique patients evaluated by the authors appear in the Figure. Clinical findings of 58 patients are given in Table 2. The most consistent splenium changes evident from MRI were reduced T1 signal intensities, increased T2 and fluid-attenuated inversion recovery signals, and, if performed, increased diffusion-weighted imaging (DWI) (Figure). Splenium abnormalities were easiest to see with DWI in 8 of 9 original cases. Seven of our 9 patients had DWI changes in posterior limbs of the internal capsules. No splenium abnormalities were evident in computed tomograms of the 9 patients reviewed from our institution. Of those same patients, 3 had elevations of creatine kinase levels, necessitating directed treatment and surveillance.

Place holder to copy figure label and caption
Figure.

Clinical and imaging review of 6 patients. MRI indicates magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; DWI, diffusion-weighted imaging; LP, lumbar puncture; ADC, apparent diffusion coefficient; and D50, dextrose (25 g) in 50 mL of buffered water.

Graphic Jump Location
Table Graphic Jump LocationTable 2. Findings Associated With Magnetic Resonance Imaging–Defined Splenium Changes

The DWI was reported with apparent diffusion coefficient (ADC) values in 12 patients; all but 1 was reduced.3,15,19,21,2628 Of those with reductions, 8 of 11 had complete clinical recovery. In 16 of 18 patients, splenium abnormalities resolved on follow-up MRI. The DWI changes and ADC values related to convulsions showed no residual MRI or clinical abnormalities. The patient with increased ADC values had complete resolution of MRI and clinical findings.28

The MRI-documented splenium changes may be associated with confusion, ataxia, seizure, hemispheric disconnection findings, and dysarthria. The most common clinical finding was altered mental status. The triad of tremor, dementia, and death as described in patients with Marchiafava-Bignami disease was not seen.42 Diagnoses associated with splenium abnormalities varied markedly (Table 1). More important, DWI often showed other areas of involvement, particularly the posterior limbs of the internal capsules. The DWI demonstrated splenium changes markedly better than other MRI sequences or computed tomograms.

Reporting bias limits the usefulness of the study. Descriptions of patient symptoms, particularly of hemispheric disconnection or psychiatric findings, were sparse. In a literature-based case series, reported causes or clinical findings may not parallel what is most common. Follow-up MRI was rare, and few reports documented ADC values.

POSSIBLE INJURY MECHANISMS

The DWI signal changes suggest restricted movement of free water. The ADC values help clarify this restriction: reduced ADC values, as seen in 11 patients, suggest cytotoxic edema; ADC value increases (1 patient) suggest vasogenic edema.28,43,44 Patients with increased and decreased splenium ADC values may normalize with additional imaging, perhaps implying an absence of cytotoxic edema. Both ADC reduction and subsequent reversal are uncommon; associated diagnoses include hemiplegic migraine, venous sinus occlusion, and seizure.26,44 Splenium injuries should be added to this list.

In healthy patients who underwent MRI T2 relaxation studies, the splenium and posterior limb of the internal capsule displayed heterogeneity in water content; however, comparison tissue myelin water content was higher.45 The splenium may have easily perturbed cellular fluid mechanics when compared with surrounding tissues. Origins associated with splenium injury, including renal failure, hyponatremia, hypernatremia, hypoglycemia, infection, altitude sickness, and thiamine deficiency and alcoholism, can compromise cellular fluid regulation. How generalized convulsions might contribute to splenium DWI and ADC changes is harder to explain.

Convulsions might transiently impair available glucose, leading to brief, reversible failures of cellular fluid regulation. A similar mechanism could explain why hypoglycemic patients develop reversible splenium changes. Alternatively, antiepileptic drug toxicity or level fluctuations combined with changes in salt homeostasis and resultant myelin edema are other suggested mechanisms.2629

Not all MRI findings reversed. Persisting changes included cystic lesions within the splenium, although pathologic correlation was limited.5,6 Magnetic resonance spectroscopy suggests that lactate levels can be abnormal and may resolve over time; in patient 5, however, no spectroscopic changes were seen.7

CONFUSION, MUTISM, AND HALLUCINATIONS: WHAT IS THE ROLE OF THE SPLENIUM?

Thirty-five of the patients had confusion and delirium, and hallucinations occurred in at least 4 patients. Patient 2 is unique, because the presentation included catatonia, increased muscle tone, waxy posturing, and an amobarbital response, features similar to catatonic schizophrenia. Splenium pathologic findings from patients with schizophrenia may show increased fiber thickness and preservation of axonal fiber density.4648 Neuroimaging of new-onset schizophrenia demonstrates differing splenium size and diffusion tensor imaging anisotropy.49 Both agenesis of the corpus callosum and schizophrenia in patients suggest that disrupted interhemispheric communication predisposes to behavioral change and psychosis.50

Mutism, hallucinations, psychosis, and hemispheric disconnection are potentially more specific findings of splenium compromise. Still unclear is if and how the splenium regulates mutism or hallucinations. Perhaps the right and left hemispheres generate independent nonsense, the censure of which is necessary and normal and requires an intact splenium.

IS THERE A SPLENIUM SYNDROME?

From this series, nonspecific common findings, such as ataxia, dysarthria, increased tone, and delirium, do not easily localize. More important, splenium injuries in 7 of 9 patients occurred, with subtle changes evident in the posterior limbs of the internal capsule. Damage to these corticospinal pathways could result in marked dysarthria, ataxia, and increased tone. What surprised us was that findings of hemispheric disconnection were not common, potentially illustrating reporting bias. Prospective, descriptive studies that used DWI inclusion criteria might clarify this concession.

PROPOSED EVALUATION

Splenium changes evident on MRI are not incidental. Although infrequently associated with death, the finding can suggest treatable causes. A detailed history with regard to travel, trauma, medications, seizure activity, or substance abuse is essential. At minimum, understanding prior medical and psychiatric history, serum salt and glucose levels, renal functions, creatine kinase levels, trauma surveys, seizure risk, possible ongoing infectious or parainfectious processes, and blood pressure would be appropriate. Whether thiamine administration helps improve outcomes remains unknown. Further descriptive studies of splenium abnormalities are needed, particularly in the setting of new-onset altered mental status.

Correspondence: Michael J. Doherty, MD, Swedish Epilepsy Center, 801 Broadway, Suite 901, Seattle, WA 98122 (michael.doherty@swedish.org).

Accepted for Publication: May 25, 2004.

Author Contributions:Study concept and design: Doherty. Acquisition of data: Doherty, Jayadev, and Watson. Analysis and interpretation of data: Doherty, Konchada, and Hallam. Drafting of the manuscript: Doherty and Watson. Critical revision of the manuscript for important intellectual content: Doherty, Jayadev, Konchada, and Hallam. Administrative, technical, and material support: Jayadev and Watson. Study supervision: Doherty and Hallam.

Kawamura  MShiota  JYagishita  THirayama  K Marchiafava-Bignami disease: computed tomographic scan and magnetic resonance imaging. Ann Neurol 1985;18103- 104
PubMed Link to Article
Delangre  THannequin  DClavier  E  et al.  Marchiafava-Bignami disease with favorable development [in French]. Rev Neurol 1986;142933- 936
PubMed
Inagaki  TSaito  K A case of Marchiafava-Bignami disease demonstrated by MR diffusion-weighted image [in Japanese]. No To Shinkei 2000;52633- 637
PubMed
Gass  ABirtsch  GOlster  MSchwartz  AHennerici  MG Marchiafava-Bignami disease: reversibility of neuroimaging abnormality. J Comput Assist Tomogr 1998;22503- 504
PubMed Link to Article
Ruiz-Martinez  JMartinez Perez-Balsa  ARuibal  M  et al.  Marchiafava-Bignami disease with widespread extracallosal lesions and favourable course. Neuroradiology 1999;4140- 43
PubMed Link to Article
Chang  KHCha  SHHan  MH  et al.  Marchiafava-Bignami disease: serial changes in corpus callosum on MRI. Neuroradiology 1992;34480- 482
PubMed Link to Article
Gambini  AFalini  AMoiola  L  et al.  Marchiafava-Bignami disease: longitudinal MR imaging and MR spectroscopy study. AJNR Am J Neuroradiol 2003;24249- 253
PubMed
Hayashi  TTanohata  KKunimoto  MInoue  K Marchiafava-Bignami disease with resolving symmetrical putaminal lesion. J Neurol 2002;249227- 228
PubMed Link to Article
Celik  YKaya  MSengun  SUtku  U Marchiafava-Bignami disease: cranial MRI and SPECT findings. Clin Neurol Neurosurg 2002;104339- 341
PubMed Link to Article
Helenius  JTatlisumak  TSoinne  LValanne  LKaste  M Marchiafava-Bignami disease: two cases with favourable outcome. Eur J Neurol 2001;8269- 272
Link to Article
Yamamoto  TAshikaga  RAraki  YNishimura  Y A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images. Eur J Radiol 2000;34141- 143
PubMed Link to Article
Baron  RHeuser  KMarioth  G Marchiafava-Bignami disease with recovery diagnosed by CT and MRI: demyelination affects several CNS structures. J Neurol 1989;236364- 366
PubMed Link to Article
Caparros-Lefebvre  DPruvo  JPJosien  E  et al.  Marchiafava-Bignami disease: use of contrast media in CT and MRI. Neuroradiology 1994;36509- 511
PubMed Link to Article
Pasutharnchat  NPhanthumchinda  K Marchiafava-Bignami disease: a case report. J Med Assoc Thai 2002;85742- 746
PubMed
Takayama  HKobayashi  MSugishita  MMihara  B Diffusion-weighted imaging demonstrates transient cytotoxic edema involving the corpus callosum in a patient with diffuse brain injury. Clin Neurol Neurosurg 2000;102135- 139
PubMed Link to Article
Mendelsohn  DBLevin  HSHarward  HBruce  D Corpus callosum lesions after closed head injury in children: MRI, clinical features and outcome. Neuroradiology 1992;34384- 388
PubMed Link to Article
Kato  ZKozawa  RHashimoto  KKondo  N Transient lesion in the splenium of the corpus callosum in acute cerebellitis. J Child Neurol 2003;18291- 292
PubMed Link to Article
Cordoliani  YSSarrazin  JLFelten  D  et al.  MR of cerebral malaria. AJNR Am J Neuroradiol 1998;19871- 874
PubMed
Kobata  RTsukahara  HNakai  A  et al.  Transient MR signal changes in the splenium of the corpus callosum in rotavirus encephalopathy. J Comput Assist Tomogr 2002;26825- 828
PubMed Link to Article
Mito  YYoshida  KKikuchi  S Measles encephalitis with peculiar MRI findings: a report of two adult cases. Neurol Med 2002;56251- 256
Kobuchi  NTsukahara  HKawamura  Y  et al.  Reversible diffusion-weighted MR findings of Salmonella enteritidis-associated encephalopathy. Eur Neurol 2003;49182- 184
Link to Article
Ogura  HTakaoka  MKishi  M  et al.  Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. AJNR Am J Neuroradiol 1998;191144- 1145
PubMed
Signorini  ELucchi  SMastrangelo  M  et al.  Central nervous system involvement in a child with hemolytic uremic syndrome. Pediatr Nephrol 2000;14990- 992
PubMed Link to Article
Kieburtz  KDKetonen  LZettelmaier  AE  et al.  Magnetic resonance imaging findings in HIV cognitive impairment. Arch Neurol 1990;47643- 645
PubMed Link to Article
Ochi  HYamashita  Y A case of adult type adrenoleukodystrophy with an acute onset and repeated episodes of ataxic dysarthria [in Japanese]. Rinsho Shinkeigaku 1996;361229- 1233
Oster  JDoherty  CGrant  PE  et al.  Diffusion-weighted imaging abnormalities in the splenium after seizures. Epilepsia 2003;44852- 854
PubMed Link to Article
Mirsattari  SMLee  DHJones  MWBlume  WT Transient lesion in the splenium of the corpus callosum in an epileptic patient. Neurology 2003;601838- 1841
PubMed Link to Article
Wong  SHTurner  NBirchall  D  et al.  Reversible abnormalities of DWI in high-altitude cerebral edema. Neurology 2004;62335- 336
PubMed Link to Article
Kim  SSChang  KHKim  ST  et al.  Focal lesion in the splenium of the corpus callosum in epileptic patients. AJNR Am J Neuroradiol 1999;20125- 129
PubMed
Cohen-Gadol  AABritton  JWJack  CR  JrFriedman  JAMarsh  WR Transient postictal magnetic resonance imaging abnormality of the corpus callosum in a patient with epilepsy. J Neurosurg 2002;97714- 717
PubMed Link to Article
Polster  THoppe  MEbner  A Transient lesion in the splenium of the corpus callosum: three further cases. J Neurol Neurosurg Psychiatry 2001;70459- 463
PubMed Link to Article
Gimeno  MJLasierra  RPina  JI Marchiafava Bignami disease: four case reports. Rev Neurol 2002;35596- 598
PubMed
Hackett  PHYarnell  PRHill  R  et al.  High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA 1998;2801920- 1925
PubMed Link to Article
Johnson  MMaciunas  RDutt  P  et al.  Granulomatous angiitis masquerading as a mass lesion: magnetic resonance imaging and stereotactic biopsy findings in a patient with occult Hodgkin's disease. Surg Neurol 1989;3149- 53
PubMed Link to Article
Pekala  JSMamourian  ACWishart  HA  et al.  Focal lesion in the splenium of the corpus callosum on FLAIR MR images: a common finding with aging and after brain radiation therapy. AJNR Am J Neuroradiol 2003;24855- 861
PubMed
Tha  KKTerae  SSugiura  M  et al.  Diffusion-weighted magnetic resonance imaging in early stage of 5-fluorouracil-induced leukoencephalopathy. Acta Neurol Scand 2002;106379- 386
Link to Article
Miyake  KKamimura  TGondo  HOkamura  TNiho  Y Tacrolimus administration to a patient with cyclosporine-induced encephalopathy after allogeneic bone marrow transplantation [in Japanese]. Rinsho Ketsueki 2000;41585- 590
PubMed
Epstein  MAZimmerman  RARorke  LBSladky  JT Late-onset globoid cell leukodystrophy mimicking an infiltrating glioma. Pediatr Radiol 1991;21131- 132
PubMed Link to Article
Suwanwela  NCLeelacheavasit  N Isolated corpus callosal infarction secondary to pericallosal artery disease presenting as alien hand syndrome. J Neurol Neurosurg Psychiatry 2002;72533- 536
PubMed
Kollar  JPeter  MFulesdi  BSikula  J Is every sharply defined, symmetrical, necrotic-demyelinating lesion in the corpus callosum an actual manifestation of Marchiafava-Bignami disease? Eur J Radiol 2001;39151- 154
PubMed Link to Article
Ito  TSakai  TInagawa  SUtsu  MBun  T MR angiography of cerebral vasospasm in preeclampsia. AJNR Am J Neuroradiol 1995;161344- 1346
PubMed
Marchiafava  BBignami  A Sopra una alterazione del corpo calloso osservata in suggetti alcoolistis. Riv Pat Med 1903;8544- 599
Grant  PEHe  JHalpern  EF  et al.  Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 2001;22143- 50
PubMed Link to Article
Schaefer  PWGrant  PEGonzalez  RG Diffusion-weighted MR imaging of the brain. Radiology 2000;217331- 345
PubMed Link to Article
Whittall  KPMacKay  ALGraeb  DA  et al.  In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;3734- 43
PubMed Link to Article
Rosenthal  RBigelow  LB Quantitative brain measurements in chronic schizophrenia. Br J Psychiatry 1972;121259- 264
PubMed Link to Article
Casanova  MFZito  MBigelow  LB  et al.  Axonal counts of the corpus callosum of schizophrenic patients. J Neuropsychiatry Clin Neurosci 1989;1391- 393
PubMed
Nasrallah  HAMcCalley-Whitters  MBigelow  LB  et al.  A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res 1983;8251- 260
PubMed Link to Article
Keshavan  MSDiwadkar  VAHarenski  KRosenberg  DRSweeney  JAPettegrew  JW Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J Neurol Neurosurg Psychiatry 2002;72757- 760
Link to Article
Motomura  NSatani  SInaba  M Monozygotic twin cases of the agenesis of the corpus callosum with schizophrenic disorder. Psychiatry Clin Neurosci 2002;56199- 202
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure.

Clinical and imaging review of 6 patients. MRI indicates magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; DWI, diffusion-weighted imaging; LP, lumbar puncture; ADC, apparent diffusion coefficient; and D50, dextrose (25 g) in 50 mL of buffered water.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Causes Associated With Splenium Damage
Table Graphic Jump LocationTable 2. Findings Associated With Magnetic Resonance Imaging–Defined Splenium Changes

References

Kawamura  MShiota  JYagishita  THirayama  K Marchiafava-Bignami disease: computed tomographic scan and magnetic resonance imaging. Ann Neurol 1985;18103- 104
PubMed Link to Article
Delangre  THannequin  DClavier  E  et al.  Marchiafava-Bignami disease with favorable development [in French]. Rev Neurol 1986;142933- 936
PubMed
Inagaki  TSaito  K A case of Marchiafava-Bignami disease demonstrated by MR diffusion-weighted image [in Japanese]. No To Shinkei 2000;52633- 637
PubMed
Gass  ABirtsch  GOlster  MSchwartz  AHennerici  MG Marchiafava-Bignami disease: reversibility of neuroimaging abnormality. J Comput Assist Tomogr 1998;22503- 504
PubMed Link to Article
Ruiz-Martinez  JMartinez Perez-Balsa  ARuibal  M  et al.  Marchiafava-Bignami disease with widespread extracallosal lesions and favourable course. Neuroradiology 1999;4140- 43
PubMed Link to Article
Chang  KHCha  SHHan  MH  et al.  Marchiafava-Bignami disease: serial changes in corpus callosum on MRI. Neuroradiology 1992;34480- 482
PubMed Link to Article
Gambini  AFalini  AMoiola  L  et al.  Marchiafava-Bignami disease: longitudinal MR imaging and MR spectroscopy study. AJNR Am J Neuroradiol 2003;24249- 253
PubMed
Hayashi  TTanohata  KKunimoto  MInoue  K Marchiafava-Bignami disease with resolving symmetrical putaminal lesion. J Neurol 2002;249227- 228
PubMed Link to Article
Celik  YKaya  MSengun  SUtku  U Marchiafava-Bignami disease: cranial MRI and SPECT findings. Clin Neurol Neurosurg 2002;104339- 341
PubMed Link to Article
Helenius  JTatlisumak  TSoinne  LValanne  LKaste  M Marchiafava-Bignami disease: two cases with favourable outcome. Eur J Neurol 2001;8269- 272
Link to Article
Yamamoto  TAshikaga  RAraki  YNishimura  Y A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images. Eur J Radiol 2000;34141- 143
PubMed Link to Article
Baron  RHeuser  KMarioth  G Marchiafava-Bignami disease with recovery diagnosed by CT and MRI: demyelination affects several CNS structures. J Neurol 1989;236364- 366
PubMed Link to Article
Caparros-Lefebvre  DPruvo  JPJosien  E  et al.  Marchiafava-Bignami disease: use of contrast media in CT and MRI. Neuroradiology 1994;36509- 511
PubMed Link to Article
Pasutharnchat  NPhanthumchinda  K Marchiafava-Bignami disease: a case report. J Med Assoc Thai 2002;85742- 746
PubMed
Takayama  HKobayashi  MSugishita  MMihara  B Diffusion-weighted imaging demonstrates transient cytotoxic edema involving the corpus callosum in a patient with diffuse brain injury. Clin Neurol Neurosurg 2000;102135- 139
PubMed Link to Article
Mendelsohn  DBLevin  HSHarward  HBruce  D Corpus callosum lesions after closed head injury in children: MRI, clinical features and outcome. Neuroradiology 1992;34384- 388
PubMed Link to Article
Kato  ZKozawa  RHashimoto  KKondo  N Transient lesion in the splenium of the corpus callosum in acute cerebellitis. J Child Neurol 2003;18291- 292
PubMed Link to Article
Cordoliani  YSSarrazin  JLFelten  D  et al.  MR of cerebral malaria. AJNR Am J Neuroradiol 1998;19871- 874
PubMed
Kobata  RTsukahara  HNakai  A  et al.  Transient MR signal changes in the splenium of the corpus callosum in rotavirus encephalopathy. J Comput Assist Tomogr 2002;26825- 828
PubMed Link to Article
Mito  YYoshida  KKikuchi  S Measles encephalitis with peculiar MRI findings: a report of two adult cases. Neurol Med 2002;56251- 256
Kobuchi  NTsukahara  HKawamura  Y  et al.  Reversible diffusion-weighted MR findings of Salmonella enteritidis-associated encephalopathy. Eur Neurol 2003;49182- 184
Link to Article
Ogura  HTakaoka  MKishi  M  et al.  Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. AJNR Am J Neuroradiol 1998;191144- 1145
PubMed
Signorini  ELucchi  SMastrangelo  M  et al.  Central nervous system involvement in a child with hemolytic uremic syndrome. Pediatr Nephrol 2000;14990- 992
PubMed Link to Article
Kieburtz  KDKetonen  LZettelmaier  AE  et al.  Magnetic resonance imaging findings in HIV cognitive impairment. Arch Neurol 1990;47643- 645
PubMed Link to Article
Ochi  HYamashita  Y A case of adult type adrenoleukodystrophy with an acute onset and repeated episodes of ataxic dysarthria [in Japanese]. Rinsho Shinkeigaku 1996;361229- 1233
Oster  JDoherty  CGrant  PE  et al.  Diffusion-weighted imaging abnormalities in the splenium after seizures. Epilepsia 2003;44852- 854
PubMed Link to Article
Mirsattari  SMLee  DHJones  MWBlume  WT Transient lesion in the splenium of the corpus callosum in an epileptic patient. Neurology 2003;601838- 1841
PubMed Link to Article
Wong  SHTurner  NBirchall  D  et al.  Reversible abnormalities of DWI in high-altitude cerebral edema. Neurology 2004;62335- 336
PubMed Link to Article
Kim  SSChang  KHKim  ST  et al.  Focal lesion in the splenium of the corpus callosum in epileptic patients. AJNR Am J Neuroradiol 1999;20125- 129
PubMed
Cohen-Gadol  AABritton  JWJack  CR  JrFriedman  JAMarsh  WR Transient postictal magnetic resonance imaging abnormality of the corpus callosum in a patient with epilepsy. J Neurosurg 2002;97714- 717
PubMed Link to Article
Polster  THoppe  MEbner  A Transient lesion in the splenium of the corpus callosum: three further cases. J Neurol Neurosurg Psychiatry 2001;70459- 463
PubMed Link to Article
Gimeno  MJLasierra  RPina  JI Marchiafava Bignami disease: four case reports. Rev Neurol 2002;35596- 598
PubMed
Hackett  PHYarnell  PRHill  R  et al.  High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA 1998;2801920- 1925
PubMed Link to Article
Johnson  MMaciunas  RDutt  P  et al.  Granulomatous angiitis masquerading as a mass lesion: magnetic resonance imaging and stereotactic biopsy findings in a patient with occult Hodgkin's disease. Surg Neurol 1989;3149- 53
PubMed Link to Article
Pekala  JSMamourian  ACWishart  HA  et al.  Focal lesion in the splenium of the corpus callosum on FLAIR MR images: a common finding with aging and after brain radiation therapy. AJNR Am J Neuroradiol 2003;24855- 861
PubMed
Tha  KKTerae  SSugiura  M  et al.  Diffusion-weighted magnetic resonance imaging in early stage of 5-fluorouracil-induced leukoencephalopathy. Acta Neurol Scand 2002;106379- 386
Link to Article
Miyake  KKamimura  TGondo  HOkamura  TNiho  Y Tacrolimus administration to a patient with cyclosporine-induced encephalopathy after allogeneic bone marrow transplantation [in Japanese]. Rinsho Ketsueki 2000;41585- 590
PubMed
Epstein  MAZimmerman  RARorke  LBSladky  JT Late-onset globoid cell leukodystrophy mimicking an infiltrating glioma. Pediatr Radiol 1991;21131- 132
PubMed Link to Article
Suwanwela  NCLeelacheavasit  N Isolated corpus callosal infarction secondary to pericallosal artery disease presenting as alien hand syndrome. J Neurol Neurosurg Psychiatry 2002;72533- 536
PubMed
Kollar  JPeter  MFulesdi  BSikula  J Is every sharply defined, symmetrical, necrotic-demyelinating lesion in the corpus callosum an actual manifestation of Marchiafava-Bignami disease? Eur J Radiol 2001;39151- 154
PubMed Link to Article
Ito  TSakai  TInagawa  SUtsu  MBun  T MR angiography of cerebral vasospasm in preeclampsia. AJNR Am J Neuroradiol 1995;161344- 1346
PubMed
Marchiafava  BBignami  A Sopra una alterazione del corpo calloso osservata in suggetti alcoolistis. Riv Pat Med 1903;8544- 599
Grant  PEHe  JHalpern  EF  et al.  Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 2001;22143- 50
PubMed Link to Article
Schaefer  PWGrant  PEGonzalez  RG Diffusion-weighted MR imaging of the brain. Radiology 2000;217331- 345
PubMed Link to Article
Whittall  KPMacKay  ALGraeb  DA  et al.  In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;3734- 43
PubMed Link to Article
Rosenthal  RBigelow  LB Quantitative brain measurements in chronic schizophrenia. Br J Psychiatry 1972;121259- 264
PubMed Link to Article
Casanova  MFZito  MBigelow  LB  et al.  Axonal counts of the corpus callosum of schizophrenic patients. J Neuropsychiatry Clin Neurosci 1989;1391- 393
PubMed
Nasrallah  HAMcCalley-Whitters  MBigelow  LB  et al.  A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res 1983;8251- 260
PubMed Link to Article
Keshavan  MSDiwadkar  VAHarenski  KRosenberg  DRSweeney  JAPettegrew  JW Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J Neurol Neurosurg Psychiatry 2002;72757- 760
Link to Article
Motomura  NSatani  SInaba  M Monozygotic twin cases of the agenesis of the corpus callosum with schizophrenic disorder. Psychiatry Clin Neurosci 2002;56199- 202
PubMed Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 69

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com