0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Article |

Complementary Positron Emission Tomographic Studies of the Striatal Dopaminergic System in Parkinson's Disease

Angelo Antonini, MD; Peter Vontobel; Maria Psylla; Ilonka Günther, PhD; Paul R. Maguire; John Missimer, PhD; Klaus L. Leenders, MD
Arch Neurol. 1995;52(12):1183-1190. doi:10.1001/archneur.1995.00540360061017.
Text Size: A A A
Published online

ABSTRACT

Objective:  To assess the relationship between striatal dopa decarboxylase capacity, D2 dopamine receptor binding, and energy metabolism in Parkinson's disease (PD).

Design:  Positron emission tomographic (PET) studies of glucose and dopa metabolism and D2 dopamine receptor binding in the caudate nucleus and putamen of patients with PD at different Hoehn and Yahr (HY) stages using PET and the tracers 18F-fluorodeoxyglucose (FDG), 6-18F-fluoro-l-dopa (FDOPA), and 11C-raclopride (RACLO).

Setting:  Positron emission tomography research program at the Paul Scherrer Institute.

Subjects:  Twenty patients with PD at different stages of the disease (HY stages I through IV; five patients for each stage) compared with separate groups of agematched healthy subjects.

Main Outcome Measures:  Influx constant ( Ki ) for specific FDOPA uptake; uptake index ratio for RACLO binding to D2 dopamine receptors; normalized to global FDG metabolic rate for glucose consumption; and semiquantitative score for assessment of tremor, rigidity, and bradykinesia in PD.

Results:  Patients with PD at HY stages I to II (hereafter HY-I-II PD) revealed reduced FDOPA metabolism, particularly in the putamen. The FDOPA uptake in the putamen and caudate nucleus declined with increasing HY staging and scoring for bradykinesia and rigidity. Putamen RACLO binding to D2 dopamine receptors was up-regulated in patients with HY-I-II PD but declined toward control values, with increasing disease severity. Putamen side-to-side asymmetries of FDOPA metabolism and RACLO binding revealed a significant correlation. Putamen FDG metabolism showed a relative increase in all patients with PD.

Conclusions:  Our results show that FDOPA, RACLO, and FDG PET measurements provide complementary information to characterize metabolic and receptor changes in the striatum of PD with different degrees of motor disability. The FDOPA uptake reflects the best motorrelated pathologic features, as indicated by the significant correlation between Ki values and clinical scores. The significant association between RACLO and FDOPA in the putamen suggests that D2 dopamine receptor changes are related to the reduction of presynaptic dopaminergic nerve terminals. Putamen FDG increase is probably the result of more complex feedback mechanisms that are primarily induced by striatal dopamine deficiency.

Topics

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Figures

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

106 Views
0 Citations
×

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Jobs
brightcove.createExperiences();