Article |

Age-Related Distribution of Neuropathologic Changes in the Cerebral Cortex of Patients With Down's Syndrome:  Quantitative Regional Analysis and Comparison With Alzheimer's Disease

Patrick R. Hof, MD; Constantin Bouras, MD; Daniel P. Perl, MD; D. Larry Sparks, PhD; Nehal Mehta; John H. Morrison, PhD
Arch Neurol. 1995;52(4):379-391. doi:10.1001/archneur.1995.00540280065020.
Text Size: A A A
Published online

Objective:  To investigate whether changes in the cerebral cortex exhibit similar distribution patterns in both disorders of Down's syndrome and Alzheimer's disease, we performed a comparative neuropathologic study of patients with these disorders to further clarify the possible relationships between these dementing conditions.

Design:  The regional and laminar distribution and density of neurofibrillary tangles and senile plaques were analyzed in the cerebral cortex of a series of 16 patients (aged 6 to 74 years) with Down's syndrome and in 10 elderly individuals with Alzheimer's disease.

Results:  Quantitative analyses revealed that the time course of neurofibrillary tangle formation in Down's syndrome displays regional patterns comparable with those observed in aging and Alzheimer's disease with layer II of the entorhinal cortex being affected first in Down's syndrome, followed by the hippocampus proper and neocortex. The oldest patients with Down's syndrome had neurofibrillary tangle densities sometimes higher than in patients with Alzheimer's disease. At variance with Alzheimer's disease, amyloid deposition was widespread in all of the cortical areas investigated and was observed much earlier than neurofibrillary tangle formation. Patients with Down's syndrome also frequently had higher senile plaque densities than patients with Alzheimer's dis

Conclusions:  These results indicate that the development of pathologic changes in patients with Down's syndrome does not parallel that observed in elderly individuals and patients with Alzheimer's disease in all respects. However, the comparable development patterns of neurofibrillary tangle formation suggest that detailed analysis of patients with Down's syndrome may be useful to further our knowledge of the mechanisms underlying the installation of the neuropathologic alterations leading to the demonstrated loss of select neuronal populations in Alzheimer's disease.


Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours





Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment


Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.