We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Frequency of Synaptic Autoantibody Accompaniments and Neurological Manifestations of Thymoma

Anastasia Zekeridou, MD1; Andrew McKeon, MD1,2; Vanda A. Lennon, MD, PhD1,2,3
[+] Author Affiliations
1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
2Department of Neurology, Mayo Clinic, Rochester, Minnesota
3Department of Immunology, Mayo Clinic, Rochester, Minnesota
JAMA Neurol. 2016;73(7):853-859. doi:10.1001/jamaneurol.2016.0603.
Text Size: A A A
Published online

Importance  Thymoma is commonly recognized in association with paraneoplastic autoimmune myasthenia gravis (MG), an IgG–mediated impairment of synaptic transmission targeting the nicotinic acetylcholine receptor of muscle. Newly identified synaptic autoantibodies may expand the serological profile of thymoma.

Objective  To investigate the frequency of potentially pathogenic neural synaptic autoantibodies in patients with thymoma.

Design, Setting, and Participants  We retrospectively identified patients with histopathologically confirmed thymoma and serum available to test for synaptic autoantibodies (collected 1986-2014) at the Mayo Clinic Neuroimmunology Laboratory. We identified and classified 193 patients with thymoma into 4 groups: (1) lacking neurological autoimmunity (n = 43); (2) isolated MG (n = 98); (3) MG plus additional autoimmune neurological manifestations (n = 26); and (4) neurological autoimmunity other than MG (n = 26).

Main Outcomes and Measures  Clinical presentation and serum profile of autoantibodies reactive with molecularly defined synaptic plasma membrane proteins of muscle, peripheral, and central nervous systems.

Results  Of the 193 patients with thymoma, mean patient age was 52 years and did not significantly differ by sex (106 women) or group. Myasthenia gravis was the most prevalent clinical manifestation (64%) followed by dysautonomia (16 patients [8%]) and encephalopathy (15 patients [8%]); 164 patients (85%) had at least 1 synaptic autoantibody, and 63 of these patients (38%) had at least 1 more. Muscle acetylcholine receptor was most frequent (78%), followed by ganglionic acetylcholine receptor (20%), voltage-gated Kv1 potassium channel-complex (13%), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (5%). Less frequent were aquaporin-4, voltage-gated Kv1 potassium channel-complex related proteins (leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2), glycine receptor, and γ-aminobutyric acid-A receptor. Synaptic autoantibodies were significantly more frequent in patients with neurological autoimmunity than in those without and were most frequent in patients with neurological manifestations other than or in addition to MG.

Conclusions and Relevance  Synaptic autoantibodies, particularly those reactive with ion channels of the ligand-gated nicotinic acetylcholine receptor superfamily (namely α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, glycine, and γ-aminobutyric acid-A receptors), were prevalent in patients with thymoma. Autoantibodies of this extended spectrum may enhance autoimmune serological testing as an aid to preoperative thymoma diagnosis. Detection of currently known synaptic autoantibody specificities absent from this profile have potential algorithmic usefulness as negative predictors for thymoma (as recognized for neuronal voltage-gated calcium channel autoantibodies).

Figures in this Article


Place holder to copy figure label and caption
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor–IgG Detected by Indirect Immunofluorescence on Mouse Brain

IgG in serum of patient with thymoma-related paraneoplastic encephalitis binds to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in mouse brain tissue.

Graphic Jump Location




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

0 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Myasthenia Gravis

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Make the Diagnosis: Myasthenia Gravis