We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Magnetic Resonance Spectroscopy Markers of Disease Progression in Multiple Sclerosis

Sara Llufriu, MD, PhD1,4; John Kornak, PhD3; Helene Ratiney, PhD1; Joonmi Oh, PhD2; Don Brenneman, BA1; Bruce A. Cree, MD1; Mehul Sampat, PhD1; Stephen L. Hauser, MD1; Sarah J. Nelson, PhD2; Daniel Pelletier, MD1,2,5,6
[+] Author Affiliations
1Department of Neurology, University of California–San Francisco
2Department of Radiology, University of California–San Francisco
3Department of Epidemiology and Biostatistics, University of California–San Francisco
4Center for Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
5Department of Neurology, Yale University, New Haven, Connecticut
6Department of Diagnostic Radiology, Yale University, New Haven, Connecticut
JAMA Neurol. 2014;71(7):840-847. doi:10.1001/jamaneurol.2014.895.
Text Size: A A A
Published online

Importance  Predicting disease evolution is becoming essential for optimizing treatment decision making in multiple sclerosis (MS). Multiple sclerosis pathologic damage typically includes demyelination, neuro-axonal loss, and astrogliosis.

Objective  To evaluate the potential of magnetic resonance markers of central nervous system injury to predict brain-volume loss and clinical disability in multiple sclerosis.

Design, Setting, and Participants  Participants were selected from the Multiple Sclerosis Center at the University of California–San Francisco. The preliminary data set included 59 patients with MS and 43 healthy control individuals. The confirmatory data set included 220 patients from an independent, large genotype-phenotype research project.

Main Outcomes and Measures  Baseline N-acetylaspartate (NAA) level, myo-inositol (mI) in normal-appearing white and gray matter, myelin water fraction in normal-appearing white matter, markers of axonal damage, astrogliosis, and demyelination were evaluated as predictors in a preliminary data set. Potential predictors were subsequently tested for replication in a confirmatory data set. Clinical scores and percentage of brain-volume change were obtained annually over 4 years as outcomes. Predictors of outcomes were assessed using linear models, linear mixed-effects models, and logistic regression.

Results  N-acetylaspartate and mI both had statistically significant effects on brain volume, prompting the use of the mI:NAA ratio in normal-appearing white matter as a predictor. The ratio was a predictor of brain-volume change in both cohorts (annual slope in the percentage of brain-volume change/unit of increase in the ratio: −1.68; 95% CI, −3.05 to −0.30; P = .02 in the preliminary study cohort and −1.08; 95% CI, −1.95 to −0.20; P = .02 in the confirmatory study cohort). Furthermore, the mI:NAA ratio predicted clinical disability (Multiple Sclerosis Functional Composite evolution: −0.52 points annually, P < .001; Multiple Sclerosis Functional Composite sustained progression: odds ratio, 2.76/SD increase in the ratio; 95% CI, 1.32 to 6.47; P = .01) in the preliminary data set and predicted Multiple Sclerosis Functional Composite evolution (−0.23 points annually; P = .01), Expanded Disability Status Scale evolution (0.57 points annually; P = .04), and Expanded Disability Status Scale sustained progression (odds ratio, 1.46; 95% CI, 1.10 to 1.94; P = .009) in the confirmatory data set. Myelin water fraction did not show predictive value.

Conclusions and Relevance  The mI:NAA ratio in normal-appearing white matter has consistent predictive power on brain atrophy and neurological disability evolution. The combined presence of astrogliosis and axonal damage in white matter has cardinal importance in disease severity.

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?





Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment


Some tools below are only available to our subscribers or users with an online account.

4 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections