0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Association Between Early-Onset Parkinson Disease and 22q11.2 Deletion Syndrome:  Identification of a Novel Genetic Form of Parkinson Disease and Its Clinical Implications

Nancy J. Butcher, MSc1,2; Tim-Rasmus Kiehl, MD3,4; Lili-Naz Hazrati, MD3,4,5; Eva W. C. Chow, MD1,6; Ekaterina Rogaeva, PhD5,7; Anthony E. Lang, MD2,5,7,8,9; Anne S. Bassett, MD1,2,6,10,11
[+] Author Affiliations
1Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
3Department of Pathology, University Health Network, Toronto, Ontario, Canada
4Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
5Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
6Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
7Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
8Toronto Western Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
9Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Ontario, Canada
10Department of Psychiatry and Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
11Dalglish Chair in 22q11.2 Deletion Syndrome, The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, University Health Network, Toronto, Ontario, Canada
JAMA Neurol. 2013;70(11):1359-1366. doi:10.1001/jamaneurol.2013.3646.
Text Size: A A A
Published online

Importance  Clinical case reports of parkinsonism co-occurring with hemizygous 22q11.2 deletions and the associated multisystem syndrome, 22q11.2 deletion syndrome (22q11.2DS), suggest that 22q11.2 deletions may lead to increased risk of early-onset Parkinson disease (PD). The frequency of PD and its neuropathological presentation remain unknown in this common genetic condition.

Objective  To evaluate a possible association between 22q11.2 deletions and PD.

Design, Setting, and Participants  An observational study of the occurrence of PD in the world’s largest cohort of well-characterized adults with a molecularly confirmed diagnosis of 22q11.2DS (n = 159 [6 with postmortem tissue]; age range, 18.1-68.6 years) was conducted in Toronto, Ontario, Canada. Rare postmortem brain tissue from individuals with 22q11.2DS and a clinical history of PD was investigated for neurodegenerative changes and compared with that from individuals with no history of a movement disorder.

Main Outcomes and Measures  A clinical diagnosis of PD made by a neurologist and neuropathological features of PD.

Results  Adults with 22q11.2DS had a significantly elevated occurrence of PD compared with standard population estimates (standardized morbidity ratio = 69.7; 95% CI, 19.0-178.5). All cases showed early onset and typical PD symptom pattern, treatment response, and course. All were negative for family history of PD and known pathogenic PD-related mutations. The common use of antipsychotics in patients with 22q11.2DS to manage associated psychiatric symptoms delayed diagnosis of PD by up to 10 years. Postmortem brain tissue revealed classic loss of midbrain dopaminergic neurons in all 3 postmortem 22q11.2DS-PD cases. Typical α-synuclein–positive Lewy bodies were present in the expected distribution in 2 cases but absent in another.

Conclusions and Relevance  These findings suggest that 22q11.2 deletions represent a novel genetic risk factor for early-onset PD with variable neuropathological presentation reminiscent of LRRK2-associated PD neuropathology. Individuals with early-onset PD and classic features of 22q11.2DS should be considered for genetic testing, and those with a known 22q11.2 deletion should be monitored for the development of parkinsonian symptoms. Molecular studies of the implicated genes, including DGCR8, may help shed light on the underlying pathophysiology of PD in 22q11.2DS and idiopathic PD.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Figures

Place holder to copy figure label and caption
Figure 1.
Cases 1 and 2 With Hemizygous 22q11.2 Deletions and Diagnosed Parkinson Disease Show Loss of Dopamine Cells and α-Synuclein Pathology

Results of immunohistochemical studies for tyrosine hydroxylase in the striatum (A and D) and substantia nigra (B, C, E, and F) are shown from a representative case of 22q11.2 deletion syndrome with Parkinson disease (case 1; A-C) and a case of 22q11.2 deletion syndrome without Parkinson disease (D-F). C and F, Density of tyrosine hydroxylase–positive neurons in the substantia nigra at low power (upper panels) and high power (lower panels). Insets in C, Example of a Lewy body visualized with hematoxylin-eosin staining (*) and an α-synuclein–positive Lewy body and neurites (**) in the substantia nigra pars compacta. CP indicates cerebral peduncle; GPe, external segment of globus pallidus; GPi, internal segment of globus pallidus; IC, internal capsule; Put, putamen; RN, red nucleus; and SN, substantia nigra (original magnification ×1 in A, B, D, E, and insets in B and E; ×10 in upper panels of C and F; ×25 in lower panels of C and F; and ×40 in insets in C).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Details of Pathological Changes in Case 3

A, Case 3 showed a smaller midbrain with gross depigmentation of the substantia nigra (left) compared with a control case without either 22q11.2 deletion syndrome or parkinsonism (right). Hematoxylin-eosin–Luxol fast blue staining of the substantia nigra pars compacta (SNc) revealed decreased density of pigmented cells in case 3 (B) compared with a control (C). D, Extensive gliosis and microglial activation in the substantia nigra as visualized with glial fibrillary acidic protein (brown chromogen) and Iba-1 (red chromogen, arrow), respectively. The amygdala (E) and thalamus (F) also showed gliosis and neuronal loss (hematoxylin-eosin–Luxol fast blue). Severe depletion of tyrosine hydroxylase–positive axons was visible in the dorsal putamen (Put) (G) and the dorsolateral aspect of the rostral putamen (H). Acc indicates accumbens; CD, caudate; GPe, external segment of globus pallidus; GPi, internal segment of globus pallidus; and IC, internal capsule. Tyrosine hydroxylase immunoreactivity was preserved in the CD and Acc (H) and was more abundant in the matrix (M) compared with the patches (P) (inset in H). I, Tyrosine hydroxylase–positive neurons were severely depleted in the ventrolateral aspect of the substantia nigra (SN) (inset). CP indicates cerebral peduncle; RN, red nucleus (original magnification ×25 in B-F; ×1 in G-I; and ×25 in insets in H and I).

Graphic Jump Location

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 2

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles
Jobs
JAMAevidence.com

The Rational Clinical Examination
Make the Diagnosis: Parkinsonism

The Rational Clinical Examination
Original Article: Does This Patient Have Parkinson Disease?

brightcove.createExperiences();