Clinical Implications of Basic Neuroscience Research |

TRIM Proteins in Therapeutic Membrane Repair of Muscular Dystrophy

Jenna Alloush1,2; Noah Weisleder, PhD1,2,3
[+] Author Affiliations
1Dorothy M. Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus
2Department of Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus
3TRIM-edicine, Inc, North Brunswick, New Jersey
JAMA Neurol. 2013;70(7):928-931. doi:10.1001/jamaneurol.2013.469.
Text Size: A A A
Published online

Muscular dystrophy represents a major unmet medical need; only palliative treatments exist for this group of debilitating diseases. Because multiple forms of muscular dystrophy arise from compromised sarcolemmal membrane integrity, a therapeutic approach that can target this loss of membrane function could be applicable to a number of these distinct diseases.One promising therapeutic approach involves the process the cell uses to repair injuries to the plasma membrane. Recent discoveries of genes associated with the membrane repair process provide an opportunity to promote this process as a way to treat muscular dystrophy. One such gene is mitsugumin 53 (MG53), a member of the tripartite motif (TRIM) family of proteins (TRIM72), which is an essential component of the membrane repair pathway in muscle. Recent results indicate that MG53/TRIM72 protein can be directly applied as a therapeutic agent to increase membrane repair capacity of many cell types and treat some aspects of the disease in mouse models of muscular dystrophy. There is great potential for the use of recombinant human MG53 in treating muscular dystrophy and other diseases in which compromised membrane integrity contributes to the disease. Other TRIM family proteins may provide additional targets for therapeutic intervention in similar disease states.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours


Place holder to copy figure label and caption
Recombinant Human MG53 (rhMG53) Associates With Phosphatidylserine (PS) During Therapeutic Membrane Repair

A, In a healthy cell, PS (blue) is generally sequestered on the inner leaflet of the plasma membrane. B, rhMG53 (green) does not seem to associate with the intact plasma membrane, but disruption of the membrane enables specific interaction with the injury site. C, After disruption of the plasma membrane, PS flows from the inner leaflet onto the cell surface. D, The appearance of PS on the membrane surface provides a target for rhMG53 binding to the injury site. E, Association of rhMG53 with the injury site enables more efficient membrane resealing to patch the disruption in the plasma membrane, enabling survival of the cell.

Graphic Jump Location




Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment


Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 2

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles