0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contributions |

Exercise Engagement as a Moderator of the Effects of APOE Genotype on Amyloid Deposition FREE

Denise Head, PhD; Julie M. Bugg, PhD; Alison M. Goate, PhD; Anne M. Fagan, PhD; Mark A. Mintun, MD; Tammie Benzinger, MD, PhD; David M. Holtzman, MD; John C. Morris, MD
[+] Author Affiliations

Author Affiliations: Departments of Psychology (Drs Head and Bugg), Radiology (Drs Head, Mintun, and Benzinger), Neurology (Drs Goate, Fagan, Holtzman, and Morris), Psychiatry (Dr Goate), and Genetics (Dr Goate), the Charles F. and Joanne Knight Alzheimer's Disease Research Center (Drs Head, Goate, Fagan, Mintun, Benzinger, Holtzman, and Morris), and the Hope Center for Neurological Disorders (Drs Goate, Fagan, and Holtzman), Washington University, St Louis, Missouri.


Arch Neurol. 2012;69(5):636-643. doi:10.1001/archneurol.2011.845.
Text Size: A A A
Published online

Objective APOE ϵ4 status has been associated with greater cortical amyloid deposition, whereas exercise has been associated with less in cognitively normal adults. The primary objective here was to examine whether physical exercise moderates the association between APOE genotype and amyloid deposition in cognitively normal adults.

Design APOE genotyping data and answers to a questionnaire on physical exercise engagement over the last decade were obtained in conjunction with cerebrospinal fluid (CSF) samples and amyloid imaging with carbon 11–labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography. Participants were classified as either low or high exercisers based on exercise guidelines of the American Heart Association.

Setting Knight Alzheimer's Disease Research Center at Washington University, St Louis, Missouri.

Participants A total of 201 cognitively normal adults (135 of whom were women) aged 45 to 88 years were recruited from the Knight Alzheimer’s Disease Research Center. Samples of CSF were collected from 165 participants. Amyloid imaging was performed for 163 participants.

Results APOE ϵ4 carriers evidenced higher [11C]PiB binding (P < .001) and lower CSF Aβ42 levels (P < .001) than did noncarriers. Our previous findings of higher [11C]PiB binding (P = .005) and lower CSF Aβ42 levels (P = .009) in more sedentary individuals were replicated. Most importantly, we observed a novel interaction between APOE status and exercise engagement for [11C]PiB binding (P = .008) such that a more sedentary lifestyle was significantly associated with higher [11C]PiB binding for ϵ4 carriers (P = .013) but not for noncarriers (P = .20). All findings remained significant after controlling for age; sex; educational level; body mass index; the presence or history of hypertension, diabetes mellitus, heart problems, or depression; and the interval between assessments.

Conclusion Collectively, these results suggest that cognitively normal sedentary APOE ϵ4–positive individuals may be at augmented risk for cerebral amyloid deposition.

Figures in this Article

The presence of an APOE ϵ4 allele is the most established genetic risk factor for Alzheimer disease (AD), with a higher percentage of individuals with AD having an ϵ4 allele in comparison with the general population.1,2 In addition, the age at dementia onset is earlier,2,3 and the rate of cognitive decline may be higher in ϵ4 carriers with AD compared with noncarriers with AD.48 Even in cognitively normal middle-aged and older adults, APOE ϵ4 status has been associated with reduced cognitive performance9 and greater cognitive decline.10,11 More recently, it has been demonstrated that cognitively normal adults with an APOE ϵ4 allele show greater cortical amyloid deposition as indicated by increased binding of the amyloid imaging agent carbon 11–labeled Pittsburgh Compound B ([11C]PiB) and by lower levels of Aβ42 in cerebrospinal fluid (CSF) samples.1215

Potentially modifiable lifestyle practices, such as engagement in physical exercise, may protect against cognitive decline. The mechanisms through which exercise may confer benefits include enhanced neurogenesis and angiogenesis, increased release of growth factors (eg, brain-derived neurotrophic factor) that promote neuronal plasticity, and lowering of cardiovascular risk factors.1618 An inverse association between physical activity and cognitive decline and dementia generally is supported, although there have been inconsistent findings.19,20 In addition, there have been mixed findings on the benefits of exercise in transgenic AD mouse models.21,22 However, we recently demonstrated that there was lower amyloid deposition, as estimated with [11C]PiB binding and CSF samples of Aβ42, in cognitively normal individuals who exercised regularly.12

It has been suggested that APOE status may modify associations between lifestyle factors such as exercise engagement and risk of cognitive decline and dementia.23 Several examinations of potential interactive effects of APOE status and physical activity on cognitive decline have yielded mixed findings, with reports of greater beneficial effects of exercise for ϵ4 carriers,2429 no difference between ϵ4 carriers and noncarriers in exercise effects,3032 and greater benefits for noncarriers than ϵ4 carriers.33 By contrast, the interactive effects of APOE status and physical exercise on amyloid deposition have not been fully investigated. The goal of the present study was to assess whether exercise moderates the effects of APOE status on amyloid deposition in a cohort of cognitively normal older adults. The primary hypotheses were that (1) APOE ϵ4 status would be associated with greater amyloid deposition, (2) exercise engagement would be associated with lower amyloid deposition, and (3) a sedentary lifestyle would have a greater effect on amyloid deposition in APOE ϵ4–positive individuals.

PARTICIPANTS

Middle-aged and older adults (ie, 45-88 years) were recruited from the Knight Alzheimer's Disease Research Center at Washington University in St Louis, Missouri. A subsample of participants was recruited as part of an ongoing study at the center of adult children with parents who were diagnosed with AD.34 Based on the Washington University Clinical Dementia Rating, a validated and reliable interview-based measurement that is sensitive in detecting the earliest stages of dementia, all participants were classified as cognitively normal (a Clinical Dementia Rating of 0).35,36 Clinical assessment included determining the health history of each participant to determine the presence or history of diabetes mellitus, hypertension, neurological illness or injury, depression, or cardiovascular compromise (eg, history of angioplasty or atrial fibrillation). Data on the height and weight of each participant were also obtained and used to calculate body mass index (BMI; calculated as weight in kilograms divided by height in meters squared). Exclusionary criteria were major neurologic illnesses or injury (eg, stroke, cerebrovascular disease, or Parkinson disease).

Cerebrospinal fluid samples were obtained from 165 participants. Amyloid imaging with [11C]PiB was performed for 163 participants. An exercise engagement questionnaire was administered to all participants. All participants consented to participate in accordance with guidelines of the Washington University Human Research Protection Office. Exercise and structural data (n = 52) and amyloid data (n = 69) from some of these participants have been published previously.12,37

MEASUREMENT OF PHYSICAL EXERCISE ENGAGEMENT
Validity

A validated questionnaire assessing history of walking, running, and jogging activity for the past 10 years was used to estimate exercise engagement.38 The measure was significantly correlated with cardiorespiratory fitness measured via a treadmill test in a sample of 5063 individuals aged 18 to 80 years. Stable correlations were observed between the retrospective self-report of activity for a particular year and the aerobic fitness for that year across 10 1-year assessment periods, suggesting that the participants across the examined age range were capable of a relatively accurate self-report over an extended time span. Correlations were similar with and without controlling for age, which suggests that age was not a significant contributor to the observed associations.

Procedure

The questionnaire was administered by telephone, and participants reported the number of months per year, the number of workouts per week, the average number of miles per workout, and average time per mile for each year in which they engaged in walking, running, and jogging activity for the preceding 10 years. A physical exercise engagement score was derived for each participant by estimating metabolic equivalent values using the compendium of physical activities.38 The index of exercise engagement was the average metabolic equivalent value in units of hours per week over the past 10 years.

The distribution of exercise engagement scores was zero-inflated and heavily skewed. Transformations (eg, logarithmic) could not resolve these distributional issues. Therefore, rather than treating the exercise engagement score as a continuous variable, participants were categorized into low- and high-exercise engagement groups based on whether reported exercise levels were at or above 7.5 metabolic equivalent hours/week (30 minutes of moderate exercise 5 days/week) recommended by the American Heart Association (AHA).12

CSF COLLECTION, PROCESSING, AND BIOMARKER MEASUREMENT

Samples of CSF free from blood contamination were collected by lumbar puncture in polypropylene tubes at 8:00 AM after overnight fasting, as described previously.39 Samples were gently inverted to avoid gradient effects, briefly centrifuged at low speed to pellet any cellular elements, and aliquoted (500 μL) into polypropylene tubes before freezing at −84°C. Analyses for Aβ42 were completed using a commercial enzyme-linked immunosorbent assay (Innotest; Innogenetics). Samples were continuously kept on ice, with only a single thaw after initial freezing before assaying.

POSITRON EMISSION TOMOGRAPHIC PiB IMAGING

In vivo amyloid imaging via positron emission tomography (PET) with [11C]PiB was performed as described previously.40 Approximately 12 mCi of [11C]PiB was administered intravenously simultaneously with the initiation of a 60-minute dynamic PET scan in 3-dimensional mode. Measured attenuation factors and a ramp filter were used to reconstruct dynamic PET images. Three-dimensional regions of interest were then created for each participant based on their individual magnetic resonance imaging scans (T1-weighted 1 × 1 × 1.25-mm magnetization-prepared rapid acquisition gradient-echo sequences). A binding potential for each region of interest was calculated to express regional binding values in a manner proportional to the number of binding sites. The binding potential values from the prefrontal cortex, gyrus rectus, lateral temporal, and precuneus regions of interest were averaged to calculate a mean cortical binding potential (MCBP) value based on brain regions known to have high [11C]PiB uptake among participants with AD.40 This derived MCBP value has been shown to correlate inversely with CSF Aβ42 level39 and exercise engagement,12 to predict progression from cognitively normal status to symptomatic AD,41 and to be associated with disrupted functional connectivity of the default mode.42

APOE GENOTYPING

TaqMan assays (Applied Biosystems) for both rs429358 (ABI#C_3084793_20) and rs7412 (ABI#C_904973_10) were used for APOE genotyping. Allele calling was performed using the allelic discrimination analysis module of ABI Sequence Detection Software. Positive controls for each of the 6 possible APOE genotypes were included on the genotyping plate. Individuals were then classified as being positive24,34,43 or negative22,23,33 for ϵ4.

TIMING OF ASSESSMENTS

The mean (SD) interval between the clinical assessment and the PET scan was ±6.0 (12.4) months. The mean (SD) interval between the clinical assessment and the CSF assessment was ±2.9 (3.9) months. The mean (SD) interval between clinical and exercise assessments was ±3.4 (7.7) months for the [11C]PiB sample and ±3.3 (7.6) months for the CSF sample. Individuals had a Clinical Dementia Rating of 0 at all assessments.

The mean (SD) interval between the exercise assessment and the PET scan was ±0.92 (1.3) years. For 105 of 163 individuals, the exercise assessment was subsequent to the PET scan and thus captured exercise behavior during the time of the PET scan. For the remaining 58 individuals, the exercise assessment was prior to the PET scan by a mean (SD) of −0.33 (0.33) years. Thus, for these individuals, the reported exercise behavior would have occurred almost exclusively during a time period prior to the PET scan.

The mean (SD) interval between the exercise assessment and the CSF assessment was ±1.6 (2.2) years. For 113 of 165 individuals, the exercise assessment was subsequent to the CSF assessment and thus captured exercise behavior during the time of the CSF assessment. For the remaining 52 individuals, the exercise assessment was prior to the CSF assessment by a mean (SD) of −0.28 (0.34) years. Thus, for these individuals, the reported exercise behavior would have occurred almost exclusively during a time period prior to the CSF assessment.

STATISTICAL ANALYSES

All analyses were conducted using SPSS/PASW version 17.0 (SPSS Inc). We first tested for group differences (ie, exercise group and APOE status) in demographic and health variables using the Student t test for continuous variables and the Fisher exact test for dichotomous variables (Tables 1 and 2).

Table Graphic Jump LocationTable 1. Participant Characteristics for APOE Groups
Table Graphic Jump LocationTable 2. Participant Characteristics for AHA Exercise Groups

We used hierarchical multiple regression (using ordinary least squares method) to examine the unique variance accounted for by the exercise group × APOE status interaction above and beyond the main effects (ie, exercise group and APOE status) for each of the separate estimates of amyloid deposition. There were separate regression models for each complete cohort (ie, MCBP and CSF Aβ42 level) with no missing data points. The main effects of exercise group and APOE status were entered in one step, and the exercise group × APOE status interaction term was entered in the next step. Importantly, a significant interaction indicates that exercise group exerts a moderating effect on the influence of APOE status on amyloid deposition above and beyond the influence of either exercise group or APOE status alone. All statistical significance tests were 1-tailed because we had a priori directional hypotheses regarding the main and interactive effects, and α = .05.

MCBP COHORT

There were significant APOE group differences in age (P = .03) and a nonsignificant trend for a group difference in presence or history hypertension (P = .07). In addition, there were significant exercise group differences in educational level (P = .04) and presence or history of hypertension (P = .04) and a nonsignificant trend for BMI (P = .09). Lastly, there was a significant correlation between MCBP and age (P = .02). No other associations with demographic or health variables reached or approached significance (all P > .15). Thus, age, educational level, BMI, and presence or history of hypertension were included as covariates in the first step in the model examining MCBP. Because there was evidence of mild-to-moderate heteroscedasticity in the initial ordinary least squares model (White's test = 43.20; P = .03), robust regression was conducted and is reported (results were equivalent for ordinary least squares and robust regression).

In the regression model examining MCBP (Table 3), there were significant exercise group (P < .001) and APOE status (P < .001) differences. High-exercise individuals had lower MCBP compared with low-exercise individuals (mean difference, −0.079 [95% CI, −0.124 to −0.034]), and ϵ4-positive individuals had higher MCBP compared with ϵ4-negative individuals (mean difference, 0.141 [95% CI, 0.071-0.211]). There was a significant exercise group × APOE status interaction (P = .002; Figure 1) that reflected a greater exercise effect on MCBP in ϵ4-positive individuals (mean difference between exercise groups, 0.183 [95% CI, −0.308 to 0.059]) compared with ϵ4-negative individuals (mean difference between exercise groups, −0.019 [95% CI, −0.052 to 0.014]). Notably, results were similar when other potentially confounding demographic and health variables (ie, sex and the presence or history of diabetes, heart problems, or depression) and the delay between the PET scan and exercise assessment were additionally included as covariates (exercise group, P < .001; APOE status, P < .001; exercise group × APOE status interaction, P = .004).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Association between APOE status and exercise engagement for the mean cortical binding potential (MCBP). There was a significant APOE status × exercise engagement interaction such that a more sedentary lifestyle was significantly associated with higher carbon 11–labeled Pittsburgh Compound B uptake for ϵ4 carriers but not for noncarriers. Error bars represent standard error of measurement.

Table Graphic Jump LocationTable 3. Regression Results for MCBP Cohort
CSF Aβ42 COHORT

There were significant APOE group differences in age (P = .02), BMI (P = .014), and presence or history of hypertension (P = .012) and significant exercise group differences in BMI (P < .001) and presence or history of hypertension (P = .02). No other associations approached or reached significance. Thus, age, BMI, and presence or history of hypertension were included as covariates in the first step in the model examining CSF Aβ42 levels. There was no evidence of heteroscedasticity (White's test = 21.11; P = .39), so the ordinary least squares regression results are reported.

In the regression model examining CSF Aβ42 levels (Table 4), there were significant exercise group (P = .005) and APOE status (P < .001) differences (Figure 2). Low-exercise individuals had lower CSF Aβ42 compared with high-exercise individuals (mean difference, 96.08 [95% CI, 17.21-174.95]), and ϵ4-positive individuals also had lower CSF Aβ42 compared with ϵ4-negative individuals (mean difference, −159.18 [95% CI, −227.90 to −90.45]). However, the exercise group × APOE status interaction was not significant (P = .41). Thus, the exercise effect on CSF Aβ42 level did not differ between ϵ4-positive individuals (mean difference between exercise groups, 80.11 [95% CI, −41.37 to 201.58]) and ϵ4-negative individuals (mean difference between exercise groups, 102.48 [95% CI, −2.35 to 207.32]). Notably, results were similar when other potentially confounding demographic and health variables (ie, sex; educational level; and presence or history of diabetes, heart problems, or depression) and the delay between lumbar puncture and exercise assessment were included as covariates (exercise group, P = .011; APOE status, P < .001; exercise group × APOE status interaction, P = .37).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Association between APOE status and exercise engagement for cerebrospinal fluid (CSF) Aβ42 level. APOE ϵ4 carriers had lower CSF Aβ42 levels. Sedentary individuals had lower CSF Aβ42 levels. The APOE status × exercise engagement interaction was not significant. Error bars represent standard error of measurement.

Table Graphic Jump LocationTable 4. Regression Results for CSF Aβ42 Cohort

APOE status is associated with increased risk of cognitive decline and elevated amyloid deposition.46,1015 In contrast, exercise engagement has been associated with reduced risk of cognitive decline19,20 and lower levels of amyloid deposition.12 In the present investigation, we sought to replicate the effects of APOE genotype and exercise engagement on amyloid deposition and to further examine whether exercise moderates the effects of APOE genotype on amyloid deposition.

Consistent with several past findings,1215 the presence of an APOE ϵ4 allele was associated with elevated amyloid deposition as assessed with a [11C]PiB-PET scan. In addition, we observed lower [11C]PiB binding for individuals who exercised at or above levels recommended by the AHA, similar to our previous study12 of 69 individuals. However, herein we report the novel finding of a significant interaction between APOE and exercise engagement for cerebral amyloid burden. Specifically, a significant effect of exercise engagement was present for APOE ϵ4 carriers but not for noncarriers, with sedentary ϵ4-positive individuals having greater MCBP values compared with active ϵ4-positive individuals. In fact, post hoc analyses indicate that the magnitude of MCBP was equivalent between active ϵ4-positive individuals and all ϵ4-negative individuals (t = 0.07; P = .41), and between active ϵ4-positive individuals and active ϵ4-negative individuals (t = −0.722; P = .24). Collectively, these findings suggest that the combination of ϵ4-positive status and a sedentary lifestyle may place individuals at augmented risk for amyloid deposition, as assessed via [11C]PiB PET. This result remained robust after controlling for significant group differences in demographic and health variables, and after controlling for additional health variables that did not differ between groups but may have potentially contributed to the observed findings.

A greater effect of exercise engagement in APOE ϵ4 carriers is consistent with and extends existing data demonstrating increased risk of cognitive decline and dementia in sedentary ϵ4-positive individuals.2433 Greater exercise-related improvements in cognitive performance and markers of hippocampal plasticity in APOE ϵ4 transgenic mice is also supportive of the differential benefits for ϵ4 carriers.44 The APOE ϵ4 allele appears to be associated with reduced neuronal plasticity,43,45 and it has been argued that this inherent neurophysiological disadvantage makes beneficial lifestyle factors, such as exercise, preferentially important for ϵ4 carriers.28,44 The MCBP findings support the idea that a physically active lifestyle may allow ϵ4 carriers to experience brain amyloid levels equivalent to ϵ4-negative individuals. Although the mechanisms through which exercise may influence amyloid deposition remain unclear, there may be both relatively direct effects on amyloid precursor protein metabolism21,46,47 and indirect effects through influences on neurotrophic factors, neuroinflammation, cerebrovascular functioning, or glucose metabolism.4648

In terms of CSF Aβ42, we again observed that the APOE ϵ4 allele had a negative influence, with ϵ4-positive individuals having lower CSF Aβ42 levels, consistent with past reports.1215 Exercise engagement was again associated with a more beneficial profile such that those who met AHA recommendations had higher CSF Aβ42 levels. However, there was no interaction between APOE status and exercise engagement for CSF Aβ42 level. Unlike for MCBP, sedentary ϵ4-positive individuals did not have a significantly greater effect of exercise engagement on CSF Aβ42 level compared with active ϵ4-positive individuals.

The reason for the discrepancy between MCBP and CSF Aβ42 is uncertain. The 2 largely reflect complimentary estimates of the same process of amyloid plaque development in the brain and are strongly associated.38,49 However, [11C]PiB PET identifies only fibrillar Aβ, whereas CSF Aβ42 levels may reflect nonfibrillar Aβ species as well.5052 In addition, although CSF Aβ42 estimates could conceivably reflect amyloid deposition in various regions of the brain, the MCBP estimate represents select regions of high amyloid deposition, and this difference may contribute to our findings. It is also possible that our sample size was insufficient to detect differences in exercise effects on APOE groups in terms of CSF Aβ42.

The present investigation provides support for an association between exercise engagement and amyloid deposition, with stronger associations in ϵ4-positive individuals in terms of MCBP. However, several limitations must be considered. It is conceivable that some confounding factors not assessed here (eg, socioeconomic status, ability to engage in physical exercise, and personality) may have influenced our results and are thus relevant to examine in future investigations. Inferences about causal flow between exercise and amyloid deposition are not possible given the cross-sectional design. Although it is possible that subclinical dementia may have subtly influenced exercise engagement or reporting of exercise in ϵ4-positive individuals, neither the proportion of individuals meeting AHA-recommended levels nor the mean exercise levels differed between APOE groups. Another potential concern is the use of a self-report measure of exercise engagement and the administration of the questionnaire by telephone in contrast to the in-person interview used in the validation study.37 Furthermore, the measure is significantly, but not perfectly, correlated with cardiorespiratory fitness. Although the validation sample included older adults and although the magnitudes of association with cardiorespiratory fitness were similar with and without controlling for age, the measure may still be limited by older adults' ability to accurately recall and report their exercise behavior over an extended period of time.

In summary, our findings suggest that exercise at levels recommended by the AHA may be particularly beneficial in reducing the risk of brain amyloid deposition in cognitively normal ϵ4-positive individuals. Longitudinal investigations and intervention studies that incorporate measures through which exercise may influence amyloid deposition are warranted to address causality and mechanisms.

Correspondence: Denise Head, PhD, Department of Psychology, Washington University, Campus Box 1125, One Brookings Dr, St Louis, MO 63130 (dhead@wustl.edu).

Accepted for Publication: July 1, 2011.

Published Online: January 9, 2012. doi:10.1001/archneurol.2011.845

Author Contributions:Study concept and design: Head and Bugg. Acquisition of data: Head, Bugg, Goate, Fagan, Mintun, Benzinger, and Morris. Analysis and interpretation of data: Head, Bugg, Mintun, and Holtzman. Drafting of the manuscript: Head and Bugg. Critical revision of the manuscript for important intellectual content: Head, Bugg, Goate, Fagan, Mintun, Benzinger, Holtzman, and Morris. Obtained funding: Goate, Holtzman, and Morris. Administrative, technical, and material support: Head, Fagan, Mintun, Benzinger, and Morris. Study supervision: Goate, Holtzman, and Morris.

Financial Disclosure: Dr Goate reports that she has received consultancy fees from AstraZeneca, has provided expert testimony to Howrey & Associates, and has received payment for lectures, including service on speakers bureaus, from Pfizer, AstraZeneca, and Genentech and royalties from Taconic, and that her institution has received grants from AstraZeneca, Genentech, and Pfizer. Dr Holtzman reports that he has consulted for Pfizer, Bristol-Myers Squibb, Innogenetics, and Medtronic and is on the scientific advisory boards of EnVivo, Satori, and C2N Diagnostics and that he has received research grants from AstraZeneca, Eli Lilly, and C2N Diagnostics.

Funding/Support: This work was supported by National Institutes of Health grants P50 AG05861, P01 AG03991, and P01 AG026276. Dr Bugg was supported by National Institute on Aging grant 5T32AG00030.

Additional Contributions: We thank our lumbar puncture physicians for obtaining CSF samples, Ms Aarti Shah and Mr Matt Amos for processing and analyzing the CSF samples, and Ms Sushila Sathyan for scheduling the lumbar punctures. We thank the Knight Alzheimer’s Disease Research Center Genetics Core for APOE genotyping.

Farrer LA, Cupples LA, Haines JL,  et al; APOE and Alzheimer Disease Meta Analysis Consortium.  Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis.  JAMA. 1997;278(16):1349-1356
PubMed   |  Link to Article
Corder EH, Saunders AM, Strittmatter WJ,  et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.  Science. 1993;261(5123):921-923
PubMed   |  Link to Article
Blacker D, Haines JL, Rodes L,  et al.  ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative.  Neurology. 1997;48(1):139-147
PubMed   |  Link to Article
Brayne C, Harrington CR, Wischik CM,  et al.  Apolipoprotein E genotype in the prediction of cognitive decline and dementia in a prospectively studied elderly population.  Dementia. 1996;7(3):169-174
PubMed
Craft S, Teri L, Edland SD,  et al.  Accelerated decline in apolipoprotein E-epsilon4 homozygotes with Alzheimer's disease.  Neurology. 1998;51(1):149-153
PubMed   |  Link to Article
Martins CA, Oulhaj A, de Jager CA, Williams JH. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model.  Neurology. 2005;65(12):1888-1893
PubMed   |  Link to Article
Hoyt BD, Massman PJ, Schatschneider C, Cooke N, Doody RS. Individual growth curve analysis of APOE epsilon 4-associated cognitive decline in Alzheimer disease.  Arch Neurol. 2005;62(3):454-459
PubMed   |  Link to Article
Kleiman T, Zdanys K, Black B,  et al.  Apolipoprotein E epsilon4 allele is unrelated to cognitive or functional decline in Alzheimer's disease: retrospective and prospective analysis.  Dement Geriatr Cogn Disord. 2006;22(1):73-82
PubMed   |  Link to Article
Small BJ, Rosnick CB, Fratiglioni L, Bäckman L. Apolipoprotein E and cognitive performance: a meta-analysis.  Psychol Aging. 2004;19(4):592-600
PubMed   |  Link to Article
Caselli RJ, Dueck AC, Osborne D,  et al.  Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect.  N Engl J Med. 2009;361(3):255-263
PubMed   |  Link to Article
Knopman DS, Mosley TH, Catellier DJ, Coker LH.Atherosclerosis Risk in Communities Study Brain MRI Study.  Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study.  Alzheimers Dement. 2009;5(3):207-214
PubMed   |  Link to Article
Liang KY, Mintun MA, Fagan AM,  et al.  Exercise and Alzheimer's disease biomarkers in cognitively normal older adults.  Ann Neurol. 2010;68(3):311-318
PubMed   |  Link to Article
Morris JC, Roe CM, Xiong C,  et al.  APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging.  Ann Neurol. 2010;67(1):122-131
PubMed   |  Link to Article
Sunderland T, Mirza N, Putnam KT,  et al.  Cerebrospinal fluid beta-amyloid1-42 and tau in control subjects at risk for Alzheimer's disease: the effect of APOE epsilon4 allele.  Biol Psychiatry. 2004;56(9):670-676
PubMed   |  Link to Article
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease.  Ann Neurol. 2010;67(3):308-316
PubMed
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation.  Trends Neurosci. 2007;30(9):464-472
PubMed   |  Link to Article
Haskell WL, Lee IM, Pate RR,  et al.  Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association.  Med Sci Sports Exerc. 2007;39(8):1423-1434
PubMed   |  Link to Article
van Praag H. Neurogenesis and exercise: past and future directions.  Neuromolecular Med. 2008;10(2):128-140
PubMed   |  Link to Article
Lee Y, Back JH, Kim J,  et al.  Systematic review of health behavioral risks and cognitive health in older adults.  Int Psychogeriatr. 2010;22(2):174-187
PubMed   |  Link to Article
Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life.  Ann Intern Med. 2010;153(3):182-193
PubMed
Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease.  J Neurosci. 2005;25(17):4217-4221
PubMed   |  Link to Article
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective.  Behav Brain Res. 2008;192(1):42-60
PubMed   |  Link to Article
Low LF, Yap MH, Brodaty H. Will testing for apolipoprotein E assist in tailoring dementia risk reduction? a review.  Neurosci Biobehav Rev. 2010;34(3):408-437
PubMed   |  Link to Article
Deeny SP, Poeppel D, Zimmerman JB,  et al.  Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers.  Biol Psychol. 2008;78(2):179-187
PubMed   |  Link to Article
Etnier JL, Caselli RJ, Reiman EM,  et al.  Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness.  Med Sci Sports Exerc. 2007;39(1):199-207
PubMed   |  Link to Article
Kivipelto M, Rovio S, Ngandu T,  et al.  Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: a population-based study.  J Cell Mol Med. 2008;12(6B):2762-2771
PubMed   |  Link to Article
Niti M, Yap KB, Kua EH, Tan CH, Ng TP. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults.  Int Psychogeriatr. 2008;20(2):237-251
PubMed   |  Link to Article
Rovio S, Kåreholt I, Helkala EL,  et al.  Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease.  Lancet Neurol. 2005;4(11):705-711
PubMed   |  Link to Article
Schuit AJ, Feskens EJ, Launer LJ, Kromhout D. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele.  Med Sci Sports Exerc. 2001;33(5):772-777
PubMed
Lindsay J, Laurin D, Verreault R,  et al.  Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging.  Am J Epidemiol. 2002;156(5):445-453
PubMed   |  Link to Article
Sabia S, Kivimaki M, Kumari M, Shipley MJ, Singh-Manoux A. Effect of Apolipoprotein E epsilon4 on the association between health behaviors and cognitive function in late midlife.  Mol Neurodegener. 2010;5:23-29
PubMed   |  Link to Article
Taaffe DR, Irie F, Masaki KH,  et al.  Physical activity, physical function, and incident dementia in elderly men: the Honolulu-Asia Aging Study.  J Gerontol A Biol Sci Med Sci. 2008;63(5):529-535
PubMed   |  Link to Article
Podewils LJ, Guallar E, Kuller LH,  et al.  Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study.  Am J Epidemiol. 2005;161(7):639-651
PubMed   |  Link to Article
Xiong C, Roe CM, Buckles V,  et al.  Role of family history of Alzheimer biomarker abnormalities in the adult children study.  Arch Neurol. 2011;68(10):1313-1319
PubMed   |  Link to Article
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules.  Neurology. 1993;43(11):2412-2414
PubMed   |  Link to Article
Storandt M, Grant EA, Miller JP, Morris JC. Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI.  Neurology. 2006;67(3):467-473
PubMed   |  Link to Article
Bugg JM, Head D. Exercise moderates age-related atrophy of the medial temporal lobe.  Neurobiol Aging. 2011;32(3):506-514
PubMed   |  Link to Article
Bowles HR, FitzGerald SJ, Morrow JR Jr, Jackson AW, Blair SN. Construct validity of self-reported historical physical activity.  Am J Epidemiol. 2004;160(3):279-286
PubMed   |  Link to Article
Fagan AM, Mintun MA, Mach RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.  Ann Neurol. 2006;59(3):512-519
PubMed   |  Link to Article
Mintun MA, Larossa GN, Sheline YI,  et al.  [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease.  Neurology. 2006;67(3):446-452
PubMed   |  Link to Article
Morris JC, Roe CM, Grant EA,  et al.  Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;66(12):1469-1475
PubMed   |  Link to Article
Sheline YI, Raichle ME, Snyder AZ,  et al.  Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly.  Biol Psychiatry. 2010;67(6):584-587
PubMed   |  Link to Article
Huang Y. Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases.  Curr Opin Lipidol. 2010;21(4):337-345
PubMed   |  Link to Article
Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice.  Alzheimers Dement. 2009;5(4):287-294
PubMed   |  Link to Article
Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein.  Annu Rev Genomics Hum Genet. 2000;1:507-537
PubMed   |  Link to Article
Nation DA, Hong S, Jak AJ,  et al.  Stress, exercise, and Alzheimer's disease: a neurovascular pathway.  Med Hypotheses. 2011;76(6):847-854
PubMed   |  Link to Article
Radak Z, Hart N, Sarga L,  et al.  Exercise plays a preventive role against Alzheimer's disease.  J Alzheimers Dis. 2010;20(3):777-783
PubMed
Um HS, Kang EB, Leem YH,  et al.  Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model.  Int J Mol Med. 2008;22(4):529-539
PubMed
Tolboom N, van der Flier WM, Yaqub M,  et al.  Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding.  J Nucl Med. 2009;50(9):1464-1470
PubMed   |  Link to Article
Cairns NJ, Ikonomovic MD, Benzinger T,  et al.  Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report.  Arch Neurol. 2009;66(12):1557-1562
PubMed   |  Link to Article
Fagan AM, Head D, Shah AR,  et al.  Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly.  Ann Neurol. 2009;65(2):176-183
PubMed   |  Link to Article
Ikonomovic MD, Klunk WE, Abrahamson EE,  et al.  Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease.  Brain. 2008;131(pt 6):1630-1645
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Association between APOE status and exercise engagement for the mean cortical binding potential (MCBP). There was a significant APOE status × exercise engagement interaction such that a more sedentary lifestyle was significantly associated with higher carbon 11–labeled Pittsburgh Compound B uptake for ϵ4 carriers but not for noncarriers. Error bars represent standard error of measurement.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Association between APOE status and exercise engagement for cerebrospinal fluid (CSF) Aβ42 level. APOE ϵ4 carriers had lower CSF Aβ42 levels. Sedentary individuals had lower CSF Aβ42 levels. The APOE status × exercise engagement interaction was not significant. Error bars represent standard error of measurement.

Tables

Table Graphic Jump LocationTable 1. Participant Characteristics for APOE Groups
Table Graphic Jump LocationTable 2. Participant Characteristics for AHA Exercise Groups
Table Graphic Jump LocationTable 3. Regression Results for MCBP Cohort
Table Graphic Jump LocationTable 4. Regression Results for CSF Aβ42 Cohort

References

Farrer LA, Cupples LA, Haines JL,  et al; APOE and Alzheimer Disease Meta Analysis Consortium.  Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis.  JAMA. 1997;278(16):1349-1356
PubMed   |  Link to Article
Corder EH, Saunders AM, Strittmatter WJ,  et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.  Science. 1993;261(5123):921-923
PubMed   |  Link to Article
Blacker D, Haines JL, Rodes L,  et al.  ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative.  Neurology. 1997;48(1):139-147
PubMed   |  Link to Article
Brayne C, Harrington CR, Wischik CM,  et al.  Apolipoprotein E genotype in the prediction of cognitive decline and dementia in a prospectively studied elderly population.  Dementia. 1996;7(3):169-174
PubMed
Craft S, Teri L, Edland SD,  et al.  Accelerated decline in apolipoprotein E-epsilon4 homozygotes with Alzheimer's disease.  Neurology. 1998;51(1):149-153
PubMed   |  Link to Article
Martins CA, Oulhaj A, de Jager CA, Williams JH. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model.  Neurology. 2005;65(12):1888-1893
PubMed   |  Link to Article
Hoyt BD, Massman PJ, Schatschneider C, Cooke N, Doody RS. Individual growth curve analysis of APOE epsilon 4-associated cognitive decline in Alzheimer disease.  Arch Neurol. 2005;62(3):454-459
PubMed   |  Link to Article
Kleiman T, Zdanys K, Black B,  et al.  Apolipoprotein E epsilon4 allele is unrelated to cognitive or functional decline in Alzheimer's disease: retrospective and prospective analysis.  Dement Geriatr Cogn Disord. 2006;22(1):73-82
PubMed   |  Link to Article
Small BJ, Rosnick CB, Fratiglioni L, Bäckman L. Apolipoprotein E and cognitive performance: a meta-analysis.  Psychol Aging. 2004;19(4):592-600
PubMed   |  Link to Article
Caselli RJ, Dueck AC, Osborne D,  et al.  Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect.  N Engl J Med. 2009;361(3):255-263
PubMed   |  Link to Article
Knopman DS, Mosley TH, Catellier DJ, Coker LH.Atherosclerosis Risk in Communities Study Brain MRI Study.  Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study.  Alzheimers Dement. 2009;5(3):207-214
PubMed   |  Link to Article
Liang KY, Mintun MA, Fagan AM,  et al.  Exercise and Alzheimer's disease biomarkers in cognitively normal older adults.  Ann Neurol. 2010;68(3):311-318
PubMed   |  Link to Article
Morris JC, Roe CM, Xiong C,  et al.  APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging.  Ann Neurol. 2010;67(1):122-131
PubMed   |  Link to Article
Sunderland T, Mirza N, Putnam KT,  et al.  Cerebrospinal fluid beta-amyloid1-42 and tau in control subjects at risk for Alzheimer's disease: the effect of APOE epsilon4 allele.  Biol Psychiatry. 2004;56(9):670-676
PubMed   |  Link to Article
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease.  Ann Neurol. 2010;67(3):308-316
PubMed
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation.  Trends Neurosci. 2007;30(9):464-472
PubMed   |  Link to Article
Haskell WL, Lee IM, Pate RR,  et al.  Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association.  Med Sci Sports Exerc. 2007;39(8):1423-1434
PubMed   |  Link to Article
van Praag H. Neurogenesis and exercise: past and future directions.  Neuromolecular Med. 2008;10(2):128-140
PubMed   |  Link to Article
Lee Y, Back JH, Kim J,  et al.  Systematic review of health behavioral risks and cognitive health in older adults.  Int Psychogeriatr. 2010;22(2):174-187
PubMed   |  Link to Article
Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life.  Ann Intern Med. 2010;153(3):182-193
PubMed
Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease.  J Neurosci. 2005;25(17):4217-4221
PubMed   |  Link to Article
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective.  Behav Brain Res. 2008;192(1):42-60
PubMed   |  Link to Article
Low LF, Yap MH, Brodaty H. Will testing for apolipoprotein E assist in tailoring dementia risk reduction? a review.  Neurosci Biobehav Rev. 2010;34(3):408-437
PubMed   |  Link to Article
Deeny SP, Poeppel D, Zimmerman JB,  et al.  Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers.  Biol Psychol. 2008;78(2):179-187
PubMed   |  Link to Article
Etnier JL, Caselli RJ, Reiman EM,  et al.  Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness.  Med Sci Sports Exerc. 2007;39(1):199-207
PubMed   |  Link to Article
Kivipelto M, Rovio S, Ngandu T,  et al.  Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: a population-based study.  J Cell Mol Med. 2008;12(6B):2762-2771
PubMed   |  Link to Article
Niti M, Yap KB, Kua EH, Tan CH, Ng TP. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults.  Int Psychogeriatr. 2008;20(2):237-251
PubMed   |  Link to Article
Rovio S, Kåreholt I, Helkala EL,  et al.  Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease.  Lancet Neurol. 2005;4(11):705-711
PubMed   |  Link to Article
Schuit AJ, Feskens EJ, Launer LJ, Kromhout D. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele.  Med Sci Sports Exerc. 2001;33(5):772-777
PubMed
Lindsay J, Laurin D, Verreault R,  et al.  Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging.  Am J Epidemiol. 2002;156(5):445-453
PubMed   |  Link to Article
Sabia S, Kivimaki M, Kumari M, Shipley MJ, Singh-Manoux A. Effect of Apolipoprotein E epsilon4 on the association between health behaviors and cognitive function in late midlife.  Mol Neurodegener. 2010;5:23-29
PubMed   |  Link to Article
Taaffe DR, Irie F, Masaki KH,  et al.  Physical activity, physical function, and incident dementia in elderly men: the Honolulu-Asia Aging Study.  J Gerontol A Biol Sci Med Sci. 2008;63(5):529-535
PubMed   |  Link to Article
Podewils LJ, Guallar E, Kuller LH,  et al.  Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study.  Am J Epidemiol. 2005;161(7):639-651
PubMed   |  Link to Article
Xiong C, Roe CM, Buckles V,  et al.  Role of family history of Alzheimer biomarker abnormalities in the adult children study.  Arch Neurol. 2011;68(10):1313-1319
PubMed   |  Link to Article
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules.  Neurology. 1993;43(11):2412-2414
PubMed   |  Link to Article
Storandt M, Grant EA, Miller JP, Morris JC. Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI.  Neurology. 2006;67(3):467-473
PubMed   |  Link to Article
Bugg JM, Head D. Exercise moderates age-related atrophy of the medial temporal lobe.  Neurobiol Aging. 2011;32(3):506-514
PubMed   |  Link to Article
Bowles HR, FitzGerald SJ, Morrow JR Jr, Jackson AW, Blair SN. Construct validity of self-reported historical physical activity.  Am J Epidemiol. 2004;160(3):279-286
PubMed   |  Link to Article
Fagan AM, Mintun MA, Mach RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.  Ann Neurol. 2006;59(3):512-519
PubMed   |  Link to Article
Mintun MA, Larossa GN, Sheline YI,  et al.  [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease.  Neurology. 2006;67(3):446-452
PubMed   |  Link to Article
Morris JC, Roe CM, Grant EA,  et al.  Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;66(12):1469-1475
PubMed   |  Link to Article
Sheline YI, Raichle ME, Snyder AZ,  et al.  Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly.  Biol Psychiatry. 2010;67(6):584-587
PubMed   |  Link to Article
Huang Y. Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases.  Curr Opin Lipidol. 2010;21(4):337-345
PubMed   |  Link to Article
Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice.  Alzheimers Dement. 2009;5(4):287-294
PubMed   |  Link to Article
Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein.  Annu Rev Genomics Hum Genet. 2000;1:507-537
PubMed   |  Link to Article
Nation DA, Hong S, Jak AJ,  et al.  Stress, exercise, and Alzheimer's disease: a neurovascular pathway.  Med Hypotheses. 2011;76(6):847-854
PubMed   |  Link to Article
Radak Z, Hart N, Sarga L,  et al.  Exercise plays a preventive role against Alzheimer's disease.  J Alzheimers Dis. 2010;20(3):777-783
PubMed
Um HS, Kang EB, Leem YH,  et al.  Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model.  Int J Mol Med. 2008;22(4):529-539
PubMed
Tolboom N, van der Flier WM, Yaqub M,  et al.  Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding.  J Nucl Med. 2009;50(9):1464-1470
PubMed   |  Link to Article
Cairns NJ, Ikonomovic MD, Benzinger T,  et al.  Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report.  Arch Neurol. 2009;66(12):1557-1562
PubMed   |  Link to Article
Fagan AM, Head D, Shah AR,  et al.  Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly.  Ann Neurol. 2009;65(2):176-183
PubMed   |  Link to Article
Ikonomovic MD, Klunk WE, Abrahamson EE,  et al.  Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease.  Brain. 2008;131(pt 6):1630-1645
PubMed   |  Link to Article

Correspondence

July 1, 2012
Susan Landau, PhD; William Jagust, MD
Arch Neurol. 2012;69(7):940-941. doi:10.1001/archneurol.2012.510.
CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

1,425 Views
44 Citations

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
×