Original Contributions |

Proteomic Changes in Cerebrospinal Fluid of Presymptomatic and Affected Persons Carrying Familial Alzheimer Disease Mutations

John M. Ringman, MD, MS; Howard Schulman, PhD; Chris Becker, PhD; Ted Jones, PhD; Yuchen Bai, PhD; Fred Immermann, MA, MStat; Gregory Cole, PhD; Sophie Sokolow, PhD; Karen Gylys, PhD; Daniel H. Geschwind, MD, PhD; Jeffrey L. Cummings, MD; Hong I. Wan, PhD
Arch Neurol. 2012;69(1):96-104. doi:10.1001/archneurol.2011.642.
Text Size: A A A
Published online

Objective To identify cerebrospinal fluid (CSF) protein changes in persons who will develop familial Alzheimer disease (FAD) due to PSEN1 and APP mutations, using unbiased proteomics.

Design We compared proteomic profiles of CSF from individuals with FAD who were mutation carriers (MCs) and related noncarriers (NCs). Abundant proteins were depleted and samples were analyzed using liquid chromatography–electrospray ionization–mass spectrometry on a high-resolution time-of-flight instrument. Tryptic peptides were identified by tandem mass spectrometry. Proteins differing in concentration between the MCs and NCs were identified.

Setting A tertiary dementia referral center and a proteomic biomarker discovery laboratory.

Participants Fourteen FAD MCs (mean age, 34.2 years; 10 are asymptomatic, 12 have presenilin-1 [PSEN1 ] gene mutations, and 2 have amyloid precursor protein [APP ] gene mutations) and 5 related NCs (mean age, 37.6 years).

Results Fifty-six proteins were identified, represented by multiple tryptic peptides showing significant differences between MCs and NCs (46 upregulated and 10 downregulated); 40 of these proteins differed when the analysis was restricted to asymptomatic individuals. Fourteen proteins have been reported in prior proteomic studies in late-onset AD, including amyloid precursor protein, transferrin, α1β-glycoprotein, complement components, afamin precursor, spondin 1, plasminogen, hemopexin, and neuronal pentraxin receptor. Many other proteins were unique to our study, including calsyntenin 3, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 4 glutamate receptor, CD99 antigen, di- N-acetyl-chitobiase, and secreted phosphoprotein 1.

Conclusions We found much overlap in CSF protein changes between individuals with presymptomatic and symptomatic FAD and those with late-onset AD. Our results are consistent with inflammation and synaptic loss early in FAD and suggest new presymptomatic biomarkers of potential usefulness in drug development.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours


Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Network 1 (antigen presentation, cell-mediated immune response, and humoral immune response) generated by pathway analysis of the hot list. This network is displayed as nodes (genes or gene products) and edges. “Acts on” and “inhibits” edges may also include a binding event. Lines indicate biological relationships between nodes. Blue proteins are downregulated in individuals who are mutation carriers, and red proteins are upregulated. Uncolored proteins were not found to be different in our study but are linked by pathway analyses. Fx indicates function.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Network 2 (metabolic disease, renal and urologic disease, and molecular transport) generated by pathway analysis of the hot list. This network is also displayed as nodes (genes or gene products) and edges. Fx indicates function. *Indicates that components mapped to multiple protein database entries of a single gene. For further explanation of the lines and symbols used, see Figure 1 and its legend.




Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment


Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics

Users' Guides to the Medical Literature
Clinical Resolution

Users' Guides to the Medical Literature
Clinical Scenario