0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contributions |

Impact of Inflammation on Brain Volume in Multiple Sclerosis

Jojy Cheriyan, MD; Soyeon Kim, PhD; Leo J. Wolansky, MD; Stuart D. Cook, MD; Diego Cadavid, MD
Arch Neurol. 2012;69(1):82-88. doi:10.1001/archneurol.2011.674.
Text Size: A A A
Published online

Objective To study changes in brain volume measured monthly in patients treated for relapsing multiple sclerosis due to loss of tissue and the appearance of inflammation.

Design and Patients The results from T2/fluid-attenuated inversion recovery axial images from 13 consecutive monthly 3-T brain magnetic resonance imaging tests conducted on 74 patients diagnosed with relapsing multiple sclerosis in the BECOME study were used to calculate whole brain volumes using automated software analysis tools. The patients had been randomized to receive treatment with interferon beta-1b or glatiramer acetate. Ongoing inflammation was studied by counting the number of combined active lesions and measuring the volume of gadolinium enhancement. A mixed-effects model was used to analyze brain volumes over time.

Results There was a significant decrease in brain volume over time but there was no difference in its rate of change by age, sex, frequency of ongoing inflammation, multiple sclerosis type, or randomized treatment assignment. The mean rate of brain volume change per month from multivariable models was −1.1 cm3 (95% CI, −1.5 to −0.6) and during times of magnetic resonance imaging activity, it increased transiently by an average of 1.2 cm3/lesion (95% CI, 0.7 to 1.7) and 7.1 cm3/1 cm3 of gadolinium volume. In a model with both measures, combined active lesions were independent predictors of brain volume but gadolinium volume was not.

Conclusion Two major changes in brain volume occur in patients with relapsing multiple sclerosis, a steady decrease likely due to tissue loss with overlapping transient increases due to the appearance of inflammation.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure. Actual and fitted brain volumes at baseline and months 1 to 12 in 4 randomly selected patients with relapsing-remitting multiple sclerosis or clinically isolated demyelinating syndrome at risk of multiple sclerosis assigned to treatment with interferon beta-1b or glatiramer acetate. The cohort was stratified by quartiles of estimated change in brain volume, and a single participant was selected at random from each quartile. A-D, Participants from first through fourth quartiles, from fastest to slowest decline. The number of combined active lesions (CALs) and gadolinium volume are shown on the horizontal axis. A multivariable model was fit to the data, which included a random intercept and slope and fixed effects for CALs, visit month, age at baseline, and sex. The model showed CALs were positively associated with brain volume, with each lesion corresponding to a 1.2-cm3 (95% CI, 0.7 to 1.7) higher brain volume. Actual brain volume was calculated from the axial fluid-attenuated inversion recovery sequences. The expected brain volume trajectory was based on the multivariable model setting CALs to zero. The expected brain volume was based on the model with actual observed number of CALs.

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();