0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Neurological Review |

Rapidly Progressive Alzheimer Disease FREE

Christian Schmidt, MD; Martin Wolff, MD; Michael Weitz, MD; Thomas Bartlau, MD; Carsten Korth, MD, PhD; Inga Zerr, MD, PhD
[+] Author Affiliations

Author Affiliations: Dementia Research Unit, Department of Neurology, Georg-August-Universität Göttingen (Drs Schmidt, Wolff, Weitz, Bartlau, and Zerr), and Department of Neuropathology, Heinrich-Heine-Universität Düsseldorf (Dr Korth), Germany.


Arch Neurol. 2011;68(9):1124-1130. doi:10.1001/archneurol.2011.189.
Text Size: A A A
Published online

Different rates of progression have been observed among patients with Alzheimer disease. Risk factors that accelerate deterioration have been identified and some are being discussed, such as genetics, comorbidity, and the early appearance of Alzheimer disease motor signs. Progressive forms of Alzheimer disease have been reported with rapid cognitive decline and disease duration of only a few years. This short review aims to provide an overview of the current knowledge of rapidly progressive Alzheimer disease. Furthermore, we suggest that rapid, in this context, should be defined as a Mini-Mental State Examination score decrease of 6 points per year.

Alzheimer disease (AD) is the most common cause of dementia.1 It represents a major public health challenge of growing significance.2 The classic form of AD progresses slowly, with survival of approximately 8 years3 and mean cognitive decline of approximately 3 Mini-Mental State Examination (MMSE) points per year.4 In some cases, rapidly progressive AD (rpAD) has been observed,59 and its clinical profile recently has been described.8 Clinical heterogeneity has been demonstrated and categories have been established, such as early-onset or late-onset, familial, and rapidly declining forms.1,10

Although classification attempts based on biomarker profiles have been proposed, comprehensive studies are lacking to relate the distinct clinical appearance of different AD subtypes to specific neuropathologic features and biomarker patterns. Patients with an AD phenotype show heterogeneity in clinical signs, biomarkers, cognitive profiles, and disease progression rates.1113 The following variables have been suggested to explain this phenomenon: different progression speeds in various disease stages (ie, nonlinear decline11,14,15), compensatory mechanisms (ie, cognitive reserve1618) that lead to different clinical presentations (ie, neuropsychological), and disease subtypes that represent different biologic causes converging on a common final pathway (ie, biologic and neuropathologic19).

All of these factors probably contribute to the expression of specific disease phenotypes to some extent. In the clinical setting, it is important to recognize disease heterogeneity and to understand the biologic variables involved for advancing diagnostic procedures, improving estimation of progression, and adapting treatment strategies.

The experience of the German Prion Disease Surveillance Unit, which is located at the Department of Neurology at Georg-August-Universität Göttingen, Germany, spans almost 2 decades. More than 5000 cases of rapidly progressive dementia are reported each year. A multitude of differential diagnoses have to be considered, such as inflammatory, metabolic, vascular, and neurodegenerative conditions, as well as prion disease (approximately 120 patients per year are eventually diagnosed as having Creutzfeldt-Jakob disease).20,21 Alzheimer disease is a major differential diagnosis of prion disease in humans and has been identified as such in various Creutzfeldt-Jakob disease surveillance centers worldwide8,9,2224 (Table 1). Among a cohort of patients referred for rapidly progressive dementia who are initially suspected to have prion disease, our group recently identified patients diagnosed as having AD by neuropathologic examination.8 Results of the clinical, genetic, biomarker, and neuropathologic workup of patients demonstrating an especially rapidly progressive form of AD suggested that rpAD may constitute a distinct subtype. This hypothesis should be studied more carefully so it can be confirmed or rejected.

Table Graphic Jump LocationTable 1. Rapidly Progressive Alzheimer Disease (AD) Cases Mimicking Creutzfeldt-Jakob Disease in Studies of Rapid Dementias

Herein, we review clinical evidence regarding the rpAD subentity. Basic questions include: Does epidemiological evidence exist for rpAD? Can rpAD be predicted? What is the biologic basis of rpAD? Could the identification of AD subtypes, including rpAD, lead to more precise future therapeutic concepts?

Alzheimer disease is diagnosed based on clinical criteria, increasingly supported by neuroimaging and cerebrospinal fluid (CSF) biomarkers.34 Postmortem examination allows a definitive diagnosis. Although clinical appearance and neuropathologic hallmarks have defined AD since its early descriptions in the literature, AD pathologic conditions can exist without significant simultaneous cognitive impairment.35 Complicating matters, heterogeneity is observed in AD neuropathologic conditions (eg, tangle distribution).36 Relating neuropathologic lesion profiles to specific clinical signs and symptoms remains controversial. Disease courses that differered clinically in speed and slope were reported; various phenotypes were suggested to represent distinct subtypes of AD.37,38 Several attempts have been made to characterize these subtypes by defining cognitive subgroup patterns, CSF biomarker profiles, and neuroimaging characteristics.11,37,39,40 Disease progression rates also have been used to characterize AD subtypes. However, no consensus exists regarding the definition of rpAD. Moreover, the word rapid has been used ambiguously. It is unclear whether rapid should characterize the survival time or the rate of cognitive decline (and if so, using which scale). Furthermore, the trajectories of decline are unknown and may differ among subtypes of AD, impeding clear definitions. Most investigators assume a linear decline, but others suggest 3 or even 6 trajectories.11,14

Various definitions for rapid have been used in previous studies. For example, the word has been used to describe survival shorter than 4 years6 and MMSE score decreases of more than 5 points per year,41 more than 3 points per year,42 more than 4 points per 6 months,43 or more than 2.56 points per year,44 as well as Clinical Dementia Rating Scale score progression from 1 to 2 or 3 within a maximum of 3 years.45 In a meta-analysis, Ito et al46 observed a mean MMSE score decrease of 5.5 points per year in patients with mild to moderate AD. An attempt to propose a consensus defined rapid cognitive decline as a decrease of 3 or more MMSE points per 6-month period.47

Using different definitions of rapid, data indicate that approximately 10% to 30% of AD cases represent rpAD. Cortes et al48 performed a longitudinal study spanning 2 years among 686 patients with mild to moderate AD; 30% of patients had a decline that exceeded 3 MMSE points per year, and 11% of patients had a mean (SD) decline of −4.57 (0.23) MMSE points per year, which was twice as fast as the mean of the whole cohort. In another prospective study,43 24.8% of a cohort with AD experienced rapid decline, defined as a 4-point decrease in MMSE score within 6 months. In a recent study by Wallin et al,49 approximately 8% of the study population with AD had a significantly higher mortality rate and mean cognitive decline of 4.9 MMSE points per year. Table 2 gives an overview of studies with different designs that show rpAD and its frequency.

Table Graphic Jump LocationTable 2. Frequency of Rapidly Progressive Alzheimer Disease (rpAD) in Longitudinal, Cross-sectional, and Retrospective Clinical Studies

Much is known about which clinical, biochemical, and genetic factors influence the risk of developing AD or modulate the risk of advancing from mild cognitive impairment to dementia. However, little is known about what clinical signs, CSF biomarkers, and genetic factors predict speed of progression in AD.

COMORBIDITY AND CLINICAL SIGNS AND SYMPTOMS

Contributing to disease progression are many factors, including cognitive reserve, medical and social support, genetics (ie, apolipoprotein E genotype [APOE]), and environmental and cerebrovascular pathologic conditions.52 The role of comorbidity is controversial. Cardiovascular disease and diabetes mellitus commonly are known to modulate AD risk. Findings are contradictory regarding their influence on AD progression (Table 3).56,59 Certain clinical features seem to be associated with rapid deterioration. Early appearance of AD motor signs predicts rapid decline and poor outcome.38,63,64 High burden of psychotic symptoms may indicate a rapid disease course.11Table 3 gives an overview of the association of comorbidity and symptoms with AD progression.

Table Graphic Jump LocationTable 3. Comorbidity and Clinical Signs and Symptoms Predicting Rate of Cognitive Decline in Alzheimer Disease (AD)

Baseline cognitive status and preprogression rates of MMSE score decline (ie, the estimated MMSE point decrease per year per period from onset until diagnosis) have been used as predictive clinical markers. Preprogression rates of MMSE score decline have been shown to correlate with speed of further deterioration,41 and early loss of at least 4 MMSE points within 6 months predicts poor outcome.51 Also, baseline cognitive status among patients with AD predicts speed of decline in functional basic-care abilities.66 Baseline level of cognition does not necessarily correlate with mortality rate; the rate of cognitive decline showed substantial variability in prospective investigations.68 A recent meta-analysis46 demonstrated that baseline Alzheimer's Disease Assessment Scale–Cognitive values represent a covariate in speed of deterioration. Santillan et al69 proposed a scale based on educational level, insight assessment, the presence of psychosis, activities of daily living, and MMSE score. This baseline score may predict the risk of future decline.

BIOMARKERS

Cerebrospinal Fluid. Rapid cognitive decline has been associated with high total tau or phosphorylated tau (ptau) levels, low β-amyloid 1-42 (Aβ1-42) level (≤411 pg/mL), or a high ratio of total tau to Aβ1-42 (≥0.81).70 Therefore, total tau and its phosphorylated isoforms are possible prognostic markers. In particular, elevated total tau level without a proportionally elevated ptau level may predict rapid progression.71 Wallin et al49 recently demonstrated that patients with a combination of low Aβ1-42 level (<362 ± 66 pg/mL), high total tau level (>1501 ± 292 pg/mL), and high ptau level (>139 ± 39 pg/mL) have faster decline and higher mortality rates. For all absolute values cited herein, one should keep in mind that cutoff values and methods of determining biomarkers may vary among different laboratories. As a marker of rapid neuronal destruction, 14-3-3 protein72 is sometimes present in patients with rpAD.8,9,30,31

Disease stage may be a confounding factor because altered CSF biomarker levels can be associated with stage instead of progression rate. As a control, data from longitudinal studies are needed among patients with successive lumbar punctures and CSF analyses. Few studies have been performed pertaining to this subject, with short follow-up periods. Cerebrospinal fluid total tau, ptau, and Aβ1-42 levels seem to be stable among patients with AD during 2 years of follow-up.73,74 However, Buchhave et al75 reported longitudinally increasing total tau levels in AD during a 2-year period. Furthermore, Stomrud et al76 showed that ptau levels increased during a 4-year period and were associated with cognitive decline. During a 4-year period, Huey et al77 demonstrated that Aβ1-42 levels decreased slightly but total tau levels were stable.

Genetics. Research regarding genetic predictors has increased enormously. Various polymorphisms seem to predict the speed of deterioration. Some remain controversial, especially the APOE polymorphism. Although APOE is well characterized as a disease risk modulator, its importance as a predictor of progression is not well understood. Cosentino et al78 concluded that a rapid decline occurs in patients with mild AD if the APOE ε4 allele is present. Conversely, van der Vlies et al79 argued that early-onset AD is especially rapid if APOE is not present. In a recent study by 2 of us,8 the ε4 allele was rare among patients with rpAD. However, Kester et al71 found no predictive capability in the presence of APOE. An overview of other genetic biomarkers associated with the speed of deterioration is given in Table 4.

Table Graphic Jump LocationTable 4. Genetic Biomarkers Predicting Rate of Cognitive Decline in Alzheimer Disease (AD)a

Historically, AD has been regarded as a homogeneous disease. Many recent studies have acknowledged early-onset, late-onset, or rapidly declining forms, and classification attempts at using CSF biomarkers and neuropsychological test batteries have been suggested. Nevertheless, comprehensive approaches to characterizing AD subtypes on a clinicopathologic-molecular level are lacking.11,41 Recent pharmacological trials indicated that different AD subtypes may exist, with different susceptibilities to specific pharmacotherapies.91 Therefore, better characterization of clinicopathologic heterogeneity and identification of predictors in disease prognosis should improve our understanding of the pathogenesis of AD, aid the development of clinical diagnostic tools, and allow reliable prediction of progression and assignment to differential therapeutic strategies.

We encourage discussion to more clearly define rpAD in terms of survival time, cognitive decline, and functional decrease. A uniform definition would facilitate AD research and render results more comparable overall. Classic AD and rpAD features are summarized in Table 5, but data are lacking. Based on our review of the literature pertaining to rpAD, we suggest that rapid, in this context, should be defined as an MMSE score decrease of 6 points per year, consistent with the proposal by Soto et al.47 Given the knowledge regarding nonlinear decline, it is important to relate the speed of deterioration to disease stage to avoid false conclusions of heterogeneity. The use of the MMSE is limited because test results are dependent on language function. Results of the MMSE should not be relied on in the presence of aphasia, which is sometimes an initial symptom of AD. In this case, standardized assessment tools should be used. Otherwise, the advantages of the MMSE are that it is short, widely known, commonly administered, and easy to perform even in nonspecialized practices.

Table Graphic Jump LocationTable 5. Comparison of Classic Alzheimer Disease (AD) and Rapidly Progressive AD

Another approach to defining rpAD could be based on survival time or a compound index of survival time and MMSE score. Survival of 2 years or less in patients with rpAD is consistent with observations thus far and with approved criteria defining rapid dementia in prion disease diagnostics.92 Survival time or disease duration should be measured from the estimated time point when the first symptoms became apparent (as suggested by Doody et al41) because different periods until formal diagnosis may falsify the calculated survival time.

These suggestions should be evaluated and validated in prospective longitudinal studies with larger study populations. By means of this review, we encourage discussion of rpAD as a distinct subtype.

Correspondence: Christian Schmidt, MD, Dementia Research Unit, Department of Neurology, Georg-August-Universität Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany (christian.schmidt@medizin.uni-goettingen.de).

Accepted for Publication: November 30, 2010.

Author Contributions: Drs Schmidt and Zerr had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Schmidt, Korth, and Zerr. Acquisition of data: Schmidt, Wolff, Weitz, and Zerr. Analysis and interpretation of data: Schmidt, Weitz, Bartlau, and Korth. Drafting of the manuscript: Schmidt, Weitz, Bartlau, and Zerr. Critical revision of the manuscript for important intellectual content: Schmidt, Wolff, Bartlau, Korth, and Zerr. Obtained funding: Zerr. Administrative, technical, and material support: Schmidt, Wolff, Weitz, and Zerr. Study supervision: Schmidt, Korth, and Zerr.

Financial Disclosure: None reported.

Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease.  Lancet. 2006;368(9533):387-403
PubMed   |  Link to Article
Sloane PD, Zimmerman S, Suchindran C,  et al.  The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances.  Annu Rev Public Health. 2002;23:213-231
PubMed   |  Link to Article
Goldberg RJ. Alzheimer's disease.  Compr Ther. 2007;33(2):58-64
PubMed   |  Link to Article
Morris JC, Edland S, Clark C,  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD), part IV: rates of cognitive change in the longitudinal assessment of probable Alzheimer's disease.  Neurology. 1993;43(12):2457-2465
PubMed   |  Link to Article
Caselli RJ, Couce ME, Osborne D, Deen HG, Parisi JP. From slowly progressive amnesic syndrome to rapidly progressive Alzheimer disease.  Alzheimer Dis Assoc Disord. 1998;12(3):251-253
PubMed
Josephs KA, Ahlskog JE, Parisi JE,  et al.  Rapidly progressive neurodegenerative dementias.  Arch Neurol. 2009;66(2):201-207
PubMed   |  Link to Article
Mann UM, Mohr E, Chase TN. Rapidly progressive Alzheimer's disease.  Lancet. 1989;2(8666):799
PubMed  |  Link to Article   |  Link to Article
Schmidt C, Redyk K, Meissner B,  et al.  Clinical features of rapidly progressive Alzheimer's disease.  Dement Geriatr Cogn Disord. 2010;29(4):371-378
PubMed   |  Link to Article
Everbroeck B, Dobbeleir I, Waele M, Deyn P, Martin J-J, Cras P. Differential diagnosis of 201 possible Creutzfeldt-Jakob disease patients.  J Neurol. 2004;251(3):298-304
PubMed   |  Link to Article
Querfurth HW, LaFerla FM. Alzheimer's disease [published correction appears in N Engl J Med. 2010;364(6):588].  N Engl J Med. 2010;362(4):329-344
Link to Article
Wilkosz PA, Seltman HJ, Devlin B,  et al.  Trajectories of cognitive decline in Alzheimer's disease.  Int Psychogeriatr. 2010;22(2):281-290
PubMed   |  Link to Article
van der Vlies AE, Verwey NA, Bouwman FH,  et al.  CSF biomarkers in relationship to cognitive profiles in Alzheimer disease.  Neurology. 2009;72(12):1056-1061
PubMed   |  Link to Article
Iqbal K, Flory M, Khatoon S,  et al.  Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers.  Ann Neurol. 2005;58(5):748-757
PubMed   |  Link to Article
Brooks JO III, Kraemer HC, Tanke ED, Yesavage JA. The methodology of studying decline in Alzheimer's disease.  J Am Geriatr Soc. 1993;41(6):623-628
PubMed
Storandt M, Grant EA, Miller JP, Morris JC. Rates of progression in mild cognitive impairment and early Alzheimer's disease.  Neurology. 2002;59(7):1034-1041
PubMed   |  Link to Article
Stern Y. Cognitive reserve and Alzheimer disease.  Alzheimer Dis Assoc Disord. 2006;20(3):(suppl 2)  S69-S74
PubMed   |  Link to Article
Mortimer JA, Borenstein AR, Gosche KM, Snowdon DA. Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression.  J Geriatr Psychiatry Neurol. 2005;18(4):218-223
PubMed   |  Link to Article
Paradise M, Cooper C, Livingston G. Systematic review of the effect of education on survival in Alzheimer's disease.  Int Psychogeriatr. 2009;21(1):25-32
PubMed   |  Link to Article
Ritchie K, Touchon J. Heterogeneity in senile dementia of the Alzheimer type: individual differences, progressive deterioration or clinical sub-types?  J Clin Epidemiol. 1992;45(12):1391-1398
PubMed   |  Link to Article
Geschwind MD, Haman A, Miller BL. Rapidly progressive dementia.  Neurol Clin. 2007;25(3):783-807, vii
PubMed   |  Link to Article
Geschwind MD, Shu H, Haman A, Sejvar JJ, Miller BL. Rapidly progressive dementia.  Ann Neurol. 2008;64(1):97-108
PubMed   |  Link to Article
Heinemann U, Krasnianski A, Meissner B,  et al.  Creutzfeldt-Jakob disease in Germany: a prospective 12-year surveillance.  Brain. 2007;130(pt 5):1350-1359
PubMed   |  Link to Article
Gelpi E, Heinzl H, Hoftberger R,  et al.  Creutzfeldt-Jakob disease in Austria: an autopsy-controlled study.  Neuroepidemiology. 2008;30(4):215-221
PubMed   |  Link to Article
Zerr I, Poser S. Clinical diagnosis and differential diagnosis of CJD and vCJD: with special emphasis on laboratory tests.  APMIS. 2002;110(1):88-98
PubMed   |  Link to Article
Aksamit AJ Jr, Preissner CM, Homburger HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease.  Neurology. 2001;57(4):728-730
PubMed   |  Link to Article
Collins S, Boyd A, Fletcher A,  et al.  Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid.  J Clin Neurosci. 2000;7(3):203-208
PubMed   |  Link to Article
Haïk S, Brandel JP, Sazdovitch V,  et al.  Dementia with Lewy bodies in a neuropathologic series of suspected Creutzfeldt-Jakob disease.  Neurology. 2000;55(9):1401-1404
PubMed   |  Link to Article
Huang N, Marie SK, Livramento JA, Chammas R, Nitrini R. 14-3-3 Protein in the CSF of patients with rapidly progressive dementia.  Neurology. 2003;61(3):354-357
PubMed   |  Link to Article
Jansen C, Schuur M, Spliet WGM, van Gool WA, van Duijn CM, Rozemuller AJ. Eleven years of autopsy on account of Creutzfeldt-Jakob disease in the Netherlands [in Dutch].  Ned Tijdschr Geneeskd. 2009;153:A172
PubMed  |  Link to Article
Jayaratnam S, Khoo AKL, Basic D. Rapidly progressive Alzheimer's disease and elevated 14-3-3 proteins in cerebrospinal fluid.  Age Ageing. 2008;37(4):467-469
PubMed   |  Link to Article
Mahmoudi R, Manckoundia P, Morrone I, Lang P-O, Dramé M, Novella J-L. Atypical case of Alzheimer's disease mimicking Creutzfeldt-Jakob disease: interest of cerebrospinal fluid biomarkers in the differential diagnosis.  J Am Geriatr Soc. 2010;58(9):1821-1823
PubMed   |  Link to Article
Reinwald S, Westner IM, Niedermaier N. Rapidly progressive Alzheimer's disease mimicking Creutzfeldt-Jakob disease.  J Neurol. 2004;251(8):1020-1022
PubMed   |  Link to Article
Tschampa HJ, Neumann M, Zerr I,  et al.  Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease.  J Neurol Neurosurg Psychiatry. 2001;71(1):33-39
PubMed   |  Link to Article
De Meyer G, Shapiro F, Vanderstichele H,  et al; Alzheimer's Disease Neuroimaging Initiative.  Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people.  Arch Neurol. 2010;67(8):949-956
PubMed   |  Link to Article
Price JL, McKeel DW Jr, Buckles VD,  et al.  Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease.  Neurobiol Aging. 2009;30(7):1026-1036
PubMed   |  Link to Article
Mizuno Y, Ikeda K, Tsuchiya K, Ishihara R, Shibayama H. Two distinct subgroups of senile dementia of Alzheimer type: quantitative study of neurofibrillary tangles.  Neuropathology. 2003;23(4):282-289
PubMed   |  Link to Article
Davidson JE, Irizarry MC, Bray BC,  et al.  An exploration of cognitive subgroups in Alzheimer's disease.  J Int Neuropsychol Soc. 2010;16(2):233-243
PubMed   |  Link to Article
Mangone CA. Clinical heterogeneity of Alzheimer's disease: different clinical profiles can predict the progression rate [in Spanish].  Rev Neurol. 2004;38(7):675-681
PubMed
Boxer AL, Kramer JH, Du AT,  et al.  Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment.  Neurology. 2003;61(11):1485-1491
PubMed   |  Link to Article
Cummings JL. Cognitive and behavioral heterogeneity in Alzheimer's disease: seeking the neurobiological basis.  Neurobiol Aging. 2000;21(6):845-861
PubMed   |  Link to Article
Doody RS, Massman P, Dunn JK. A method for estimating progression rates in Alzheimer disease.  Arch Neurol. 2001;58(3):449-454
PubMed   |  Link to Article
Carcaillon L, Pérès K, Péré JJ, Helmer C, Orgogozo JM, Dartigues JF. Fast cognitive decline at the time of dementia diagnosis: a major prognostic factor for survival in the community.  Dement Geriatr Cogn Disord. 2007;23(6):439-445
PubMed   |  Link to Article
Dumont C, Voisin T, Nourhashemi F, Andrieu S, Koning M, Vellas B. Predictive factors for rapid loss on the Mini-Mental State Examination in Alzheimer's disease.  J Nutr Health Aging. 2005;9(3):163-167
PubMed
Buccione I, Perri R, Carlesimo GA,  et al.  Cognitive and behavioural predictors of progression rates in Alzheimer's disease.  Eur J Neurol. 2007;14(4):440-446
PubMed   |  Link to Article
Bhargava D, Weiner MF, Hynan LS, Diaz-Arrastia R, Lipton AM. Vascular disease and risk factors, rate of progression, and survival in Alzheimer's disease.  J Geriatr Psychiatry Neurol. 2006;19(2):78-82
PubMed   |  Link to Article
Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T.Alzheimer's Disease Working Group.  Disease progression meta-analysis model in Alzheimer's disease.  Alzheimers Dement. 2010;6(1):39-53
PubMed   |  Link to Article
Soto ME, Andrieu S, Arbus C,  et al.  Rapid cognitive decline in Alzheimer's disease: consensus paper.  J Nutr Health Aging. 2008;12(10):703-713
PubMed
Cortes F, Nourhashémi F, Guérin O,  et al; REAL-FR Group.  Prognosis of Alzheimer's disease today: a two-year prospective study in 686 patients from the REAL-FR Study.  Alzheimers Dement. 2008;4(1):22-29
PubMed   |  Link to Article
Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease.  Neurology. 2010;74(19):1531-1537
PubMed   |  Link to Article
Ballard C, O’Brien J, Morris CM,  et al.  The progression of cognitive impairment in dementia with Lewy bodies, vascular dementia and Alzheimer's disease.  Int J Geriatr Psychiatry. 2001;16(5):499-503
PubMed   |  Link to Article
Soto ME, Andrieu S, Cantet C,  et al; REAL.FR Group.  Predictive value of rapid decline in Mini-Mental State Examination in clinical practice for prognosis in Alzheimer's disease.  Dement Geriatr Cogn Disord. 2008;26(2):109-116
PubMed   |  Link to Article
Etiene D, Kraft J, Ganju N,  et al.  Cerebrovascular pathology contributes to the heterogeneity of Alzheimer's disease.  J Alzheimers Dis. 1998;1(2):119-134
PubMed
Starkstein SE, Jorge R, Mizrahi R, Robinson RG. A prospective longitudinal study of apathy in Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 2006;77(1):8-11
PubMed   |  Link to Article
Smith MZ, Esiri MM, Barnetson L, King E, Nagy Z. Constructional apraxia in Alzheimer's disease: association with occipital lobe pathology and accelerated cognitive decline.  Dement Geriatr Cogn Disord. 2001;12(4):281-288
PubMed   |  Link to Article
Laukka EJ, Fratiglioni L, Bäckman L. The influence of vascular disease on cognitive performance in the preclinical and early phases of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2010;29(6):498-503
PubMed   |  Link to Article
Mielke MM, Rosenberg PB, Tschanz J,  et al.  Vascular factors predict rate of progression in Alzheimer disease.  Neurology. 2007;69(19):1850-1858
PubMed   |  Link to Article
Roselli F, Tartaglione B, Federico F, Lepore V, Defazio G, Livrea P. Rate of MMSE score change in Alzheimer's disease: influence of education and vascular risk factors.  Clin Neurol Neurosurg. 2009;111(4):327-330
PubMed   |  Link to Article
Silvestrini M, Pasqualetti P, Baruffaldi R,  et al.  Cerebrovascular reactivity and cognitive decline in patients with Alzheimer disease.  Stroke. 2006;37(4):1010-1015
PubMed   |  Link to Article
Abellan van Kan G, Rolland Y, Nourhashémi F, Coley N, Andrieu S, Vellas B. Cardiovascular disease risk factors and progression of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2009;27(3):240-246
PubMed   |  Link to Article
Holmes C, Cunningham C, Zotova E,  et al.  Systemic inflammation and disease progression in Alzheimer disease.  Neurology. 2009;73(10):768-774
PubMed   |  Link to Article
Sanz C, Andrieu S, Sinclair A, Hanaire H, Vellas B.REAL.FR Study Group.  Diabetes is associated with a slower rate of cognitive decline in Alzheimer disease.  Neurology. 2009;73(17):1359-1366
PubMed   |  Link to Article
Pavlik VN, Doody RS, Massman PJ, Chan W. Influence of premorbid IQ and education on progression of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2006;22(4):367-377
PubMed   |  Link to Article
Portet F, Scarmeas N, Cosentino S, Helzner EP, Stern Y. Extrapyramidal signs before and after diagnosis of incident Alzheimer disease in a prospective population study.  Arch Neurol. 2009;66(9):1120-1126
PubMed   |  Link to Article
Scarmeas N, Albert M, Brandt J,  et al.  Motor signs predict poor outcomes in Alzheimer disease.  Neurology. 2005;64(10):1696-1703
PubMed   |  Link to Article
Volicer L, Smith S, Volicer BJ. Effect of seizures on progression of dementia of the Alzheimer type.  Dementia. 1995;6(5):258-263
PubMed
Atchison TB, Massman PJ, Doody RS. Baseline cognitive function predicts rate of decline in basic-care abilities of individuals with dementia of the Alzheimer's type.  Arch Clin Neuropsychol. 2007;22(1):99-107
PubMed   |  Link to Article
Marra C, Silveri MC, Gainotti G. Predictors of cognitive decline in the early stage of probable Alzheimer's disease.  Dement Geriatr Cogn Disord. 2000;11(4):212-218
PubMed   |  Link to Article
Hui JS, Wilson RS, Bennett DA, Bienias JL, Gilley DW, Evans DA. Rate of cognitive decline and mortality in Alzheimer's disease.  Neurology. 2003;61(10):1356-1361
PubMed   |  Link to Article
Santillan CE, Fritsch T, Geldmacher DS. Development of a scale to predict decline in patients with mild Alzheimer's disease.  J Am Geriatr Soc. 2003;51(1):91-95
PubMed   |  Link to Article
Snider BJ, Fagan AM, Roe C,  et al.  Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type.  Arch Neurol. 2009;66(5):638-645
PubMed   |  Link to Article
Kester MI, van der Vlies AE, Blankenstein MA,  et al.  CSF biomarkers predict rate of cognitive decline in Alzheimer disease.  Neurology. 2009;73(17):1353-1358
PubMed   |  Link to Article
Yutzy B, Holznagel E, Coulibaly C,  et al.  Time-course studies of 14-3-3 protein isoforms in cerebrospinal fluid and brain of primates after oral or intracerebral infection with bovine spongiform encephalopathy agent.  J Gen Virol. 2007;88(pt 12):3469-3478
PubMed   |  Link to Article
Sunderland T, Wolozin B, Galasko D,  et al.  Longitudinal stability of CSF tau levels in Alzheimer patients.  Biol Psychiatry. 1999;46(6):750-755
PubMed   |  Link to Article
Blennow K, Zetterberg H, Minthon L,  et al.  Longitudinal stability of CSF biomarkers in Alzheimer's disease.  Neurosci Lett. 2007;419(1):18-22
PubMed   |  Link to Article
Buchhave P, Blennow K, Zetterberg H,  et al.  Longitudinal study of CSF biomarkers in patients with Alzheimer's disease.  PLoS One. 2009;4(7):e6294
PubMed  |  Link to Article   |  Link to Article
Stomrud E, Hansson O, Zetterberg H, Blennow K, Minthon L, Londos E. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults.  Arch Neurol. 2010;67(2):217-223
PubMed   |  Link to Article
Huey ED, Mirza N, Putnam KT,  et al.  Stability of CSF β-amyloid1-42 and tau levels by APOE genotype in Alzheimer patients.  Dement Geriatr Cogn Disord. 2006;22(1):48-53
PubMed   |  Link to Article
Cosentino S, Scarmeas N, Helzner E,  et al.  APOE ε4 allele predicts faster cognitive decline in mild Alzheimer disease.  Neurology. 2008;70(19, pt 2):1842-1849
PubMed   |  Link to Article
van der Vlies AE, Koedam ELGE, Pijnenburg YAL, Twisk JWR, Scheltens P, van der Flier WM. Most rapid cognitive decline in APOE ε4 negative Alzheimer's disease with early onset.  Psychol Med. 2009;39(11):1907-1911
PubMed   |  Link to Article
Holmes C, Ballard C, Lehmann D,  et al.  Rate of progression of cognitive decline in Alzheimer's disease: effect of butyrylcholinesterase K gene variation.  J Neurol Neurosurg Psychiatry. 2005;76(5):640-643
PubMed   |  Link to Article
Tumini E, Porcellini E, Chiappelli M,  et al.  The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer's disease patients.  Hum Psychopharmacol. 2007;22(2):75-80
PubMed   |  Link to Article
Porcellini E, Calabrese E, Guerini F,  et al.  The hydroxy-methyl-glutaryl CoA reductase promoter polymorphism is associated with Alzheimer's risk and cognitive deterioration.  Neurosci Lett. 2007;416(1):66-70
PubMed   |  Link to Article
Belbin O, Beaumont H, Warden D, Smith AD, Kalsheker N, Morgan K. PSEN1 polymorphisms alter the rate of cognitive decline in sporadic Alzheimer's disease patients.  Neurobiol Aging. 2009;30(12):1992-1999
PubMed   |  Link to Article
Belbin O, Dunn JL, Chappell S,  et al.  A SNP in the ACT gene associated with astrocytosis and rapid cognitive decline in AD.  Neurobiol Aging. 2008;29(8):1167-1176
PubMed   |  Link to Article
Kamboh MI, Minster RL, Kenney M,  et al.  Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer's disease.  Neurobiol Aging. 2006;27(10):1435-1439
PubMed   |  Link to Article
Licastro F, Chiappelli M, Grimaldi LME,  et al.  A new promoter polymorphism in the alpha-1-antichymotrypsin gene is a disease modifier of Alzheimer's disease.  Neurobiol Aging. 2005;26(4):449-453
PubMed   |  Link to Article
Murphy GM Jr, Claassen JD, DeVoss JJ,  et al.  Rate of cognitive decline in AD is accelerated by the interleukin-1α −889 *1 allele.  Neurology. 2001;56(11):1595-1597
PubMed   |  Link to Article
Bossù P, Ciaramella A, Moro ML,  et al.  Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 2007;78(8):807-811
PubMed   |  Link to Article
Chiappelli M, Nasi M, Cossarizza A,  et al.  Polymorphisms of Fas gene: relationship with Alzheimer's disease and cognitive decline.  Dement Geriatr Cogn Disord. 2006;22(4):296-300
PubMed   |  Link to Article
Li K, Dai D, Zhao B,  et al.  Association between the RAGE G82S polymorphism and Alzheimer's disease.  J Neural Transm. 2010;117(1):97-104
PubMed   |  Link to Article
Wallin AK, Hansson O, Blennow K, Londos E, Minthon L. Can CSF biomarkers or pre-treatment progression rate predict response to cholinesterase inhibitor treatment in Alzheimer's disease?  Int J Geriatr Psychiatry. 2009;24(6):638-647
PubMed   |  Link to Article
Zerr I, Kallenberg K, Summers DM,  et al.  Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease.  Brain. 2009;132(pt 10):2659-2668
PubMed   |  Link to Article

Figures

Tables

Table Graphic Jump LocationTable 1. Rapidly Progressive Alzheimer Disease (AD) Cases Mimicking Creutzfeldt-Jakob Disease in Studies of Rapid Dementias
Table Graphic Jump LocationTable 2. Frequency of Rapidly Progressive Alzheimer Disease (rpAD) in Longitudinal, Cross-sectional, and Retrospective Clinical Studies
Table Graphic Jump LocationTable 3. Comorbidity and Clinical Signs and Symptoms Predicting Rate of Cognitive Decline in Alzheimer Disease (AD)
Table Graphic Jump LocationTable 4. Genetic Biomarkers Predicting Rate of Cognitive Decline in Alzheimer Disease (AD)a
Table Graphic Jump LocationTable 5. Comparison of Classic Alzheimer Disease (AD) and Rapidly Progressive AD

References

Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease.  Lancet. 2006;368(9533):387-403
PubMed   |  Link to Article
Sloane PD, Zimmerman S, Suchindran C,  et al.  The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances.  Annu Rev Public Health. 2002;23:213-231
PubMed   |  Link to Article
Goldberg RJ. Alzheimer's disease.  Compr Ther. 2007;33(2):58-64
PubMed   |  Link to Article
Morris JC, Edland S, Clark C,  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD), part IV: rates of cognitive change in the longitudinal assessment of probable Alzheimer's disease.  Neurology. 1993;43(12):2457-2465
PubMed   |  Link to Article
Caselli RJ, Couce ME, Osborne D, Deen HG, Parisi JP. From slowly progressive amnesic syndrome to rapidly progressive Alzheimer disease.  Alzheimer Dis Assoc Disord. 1998;12(3):251-253
PubMed
Josephs KA, Ahlskog JE, Parisi JE,  et al.  Rapidly progressive neurodegenerative dementias.  Arch Neurol. 2009;66(2):201-207
PubMed   |  Link to Article
Mann UM, Mohr E, Chase TN. Rapidly progressive Alzheimer's disease.  Lancet. 1989;2(8666):799
PubMed  |  Link to Article   |  Link to Article
Schmidt C, Redyk K, Meissner B,  et al.  Clinical features of rapidly progressive Alzheimer's disease.  Dement Geriatr Cogn Disord. 2010;29(4):371-378
PubMed   |  Link to Article
Everbroeck B, Dobbeleir I, Waele M, Deyn P, Martin J-J, Cras P. Differential diagnosis of 201 possible Creutzfeldt-Jakob disease patients.  J Neurol. 2004;251(3):298-304
PubMed   |  Link to Article
Querfurth HW, LaFerla FM. Alzheimer's disease [published correction appears in N Engl J Med. 2010;364(6):588].  N Engl J Med. 2010;362(4):329-344
Link to Article
Wilkosz PA, Seltman HJ, Devlin B,  et al.  Trajectories of cognitive decline in Alzheimer's disease.  Int Psychogeriatr. 2010;22(2):281-290
PubMed   |  Link to Article
van der Vlies AE, Verwey NA, Bouwman FH,  et al.  CSF biomarkers in relationship to cognitive profiles in Alzheimer disease.  Neurology. 2009;72(12):1056-1061
PubMed   |  Link to Article
Iqbal K, Flory M, Khatoon S,  et al.  Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers.  Ann Neurol. 2005;58(5):748-757
PubMed   |  Link to Article
Brooks JO III, Kraemer HC, Tanke ED, Yesavage JA. The methodology of studying decline in Alzheimer's disease.  J Am Geriatr Soc. 1993;41(6):623-628
PubMed
Storandt M, Grant EA, Miller JP, Morris JC. Rates of progression in mild cognitive impairment and early Alzheimer's disease.  Neurology. 2002;59(7):1034-1041
PubMed   |  Link to Article
Stern Y. Cognitive reserve and Alzheimer disease.  Alzheimer Dis Assoc Disord. 2006;20(3):(suppl 2)  S69-S74
PubMed   |  Link to Article
Mortimer JA, Borenstein AR, Gosche KM, Snowdon DA. Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression.  J Geriatr Psychiatry Neurol. 2005;18(4):218-223
PubMed   |  Link to Article
Paradise M, Cooper C, Livingston G. Systematic review of the effect of education on survival in Alzheimer's disease.  Int Psychogeriatr. 2009;21(1):25-32
PubMed   |  Link to Article
Ritchie K, Touchon J. Heterogeneity in senile dementia of the Alzheimer type: individual differences, progressive deterioration or clinical sub-types?  J Clin Epidemiol. 1992;45(12):1391-1398
PubMed   |  Link to Article
Geschwind MD, Haman A, Miller BL. Rapidly progressive dementia.  Neurol Clin. 2007;25(3):783-807, vii
PubMed   |  Link to Article
Geschwind MD, Shu H, Haman A, Sejvar JJ, Miller BL. Rapidly progressive dementia.  Ann Neurol. 2008;64(1):97-108
PubMed   |  Link to Article
Heinemann U, Krasnianski A, Meissner B,  et al.  Creutzfeldt-Jakob disease in Germany: a prospective 12-year surveillance.  Brain. 2007;130(pt 5):1350-1359
PubMed   |  Link to Article
Gelpi E, Heinzl H, Hoftberger R,  et al.  Creutzfeldt-Jakob disease in Austria: an autopsy-controlled study.  Neuroepidemiology. 2008;30(4):215-221
PubMed   |  Link to Article
Zerr I, Poser S. Clinical diagnosis and differential diagnosis of CJD and vCJD: with special emphasis on laboratory tests.  APMIS. 2002;110(1):88-98
PubMed   |  Link to Article
Aksamit AJ Jr, Preissner CM, Homburger HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease.  Neurology. 2001;57(4):728-730
PubMed   |  Link to Article
Collins S, Boyd A, Fletcher A,  et al.  Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid.  J Clin Neurosci. 2000;7(3):203-208
PubMed   |  Link to Article
Haïk S, Brandel JP, Sazdovitch V,  et al.  Dementia with Lewy bodies in a neuropathologic series of suspected Creutzfeldt-Jakob disease.  Neurology. 2000;55(9):1401-1404
PubMed   |  Link to Article
Huang N, Marie SK, Livramento JA, Chammas R, Nitrini R. 14-3-3 Protein in the CSF of patients with rapidly progressive dementia.  Neurology. 2003;61(3):354-357
PubMed   |  Link to Article
Jansen C, Schuur M, Spliet WGM, van Gool WA, van Duijn CM, Rozemuller AJ. Eleven years of autopsy on account of Creutzfeldt-Jakob disease in the Netherlands [in Dutch].  Ned Tijdschr Geneeskd. 2009;153:A172
PubMed  |  Link to Article
Jayaratnam S, Khoo AKL, Basic D. Rapidly progressive Alzheimer's disease and elevated 14-3-3 proteins in cerebrospinal fluid.  Age Ageing. 2008;37(4):467-469
PubMed   |  Link to Article
Mahmoudi R, Manckoundia P, Morrone I, Lang P-O, Dramé M, Novella J-L. Atypical case of Alzheimer's disease mimicking Creutzfeldt-Jakob disease: interest of cerebrospinal fluid biomarkers in the differential diagnosis.  J Am Geriatr Soc. 2010;58(9):1821-1823
PubMed   |  Link to Article
Reinwald S, Westner IM, Niedermaier N. Rapidly progressive Alzheimer's disease mimicking Creutzfeldt-Jakob disease.  J Neurol. 2004;251(8):1020-1022
PubMed   |  Link to Article
Tschampa HJ, Neumann M, Zerr I,  et al.  Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease.  J Neurol Neurosurg Psychiatry. 2001;71(1):33-39
PubMed   |  Link to Article
De Meyer G, Shapiro F, Vanderstichele H,  et al; Alzheimer's Disease Neuroimaging Initiative.  Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people.  Arch Neurol. 2010;67(8):949-956
PubMed   |  Link to Article
Price JL, McKeel DW Jr, Buckles VD,  et al.  Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease.  Neurobiol Aging. 2009;30(7):1026-1036
PubMed   |  Link to Article
Mizuno Y, Ikeda K, Tsuchiya K, Ishihara R, Shibayama H. Two distinct subgroups of senile dementia of Alzheimer type: quantitative study of neurofibrillary tangles.  Neuropathology. 2003;23(4):282-289
PubMed   |  Link to Article
Davidson JE, Irizarry MC, Bray BC,  et al.  An exploration of cognitive subgroups in Alzheimer's disease.  J Int Neuropsychol Soc. 2010;16(2):233-243
PubMed   |  Link to Article
Mangone CA. Clinical heterogeneity of Alzheimer's disease: different clinical profiles can predict the progression rate [in Spanish].  Rev Neurol. 2004;38(7):675-681
PubMed
Boxer AL, Kramer JH, Du AT,  et al.  Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment.  Neurology. 2003;61(11):1485-1491
PubMed   |  Link to Article
Cummings JL. Cognitive and behavioral heterogeneity in Alzheimer's disease: seeking the neurobiological basis.  Neurobiol Aging. 2000;21(6):845-861
PubMed   |  Link to Article
Doody RS, Massman P, Dunn JK. A method for estimating progression rates in Alzheimer disease.  Arch Neurol. 2001;58(3):449-454
PubMed   |  Link to Article
Carcaillon L, Pérès K, Péré JJ, Helmer C, Orgogozo JM, Dartigues JF. Fast cognitive decline at the time of dementia diagnosis: a major prognostic factor for survival in the community.  Dement Geriatr Cogn Disord. 2007;23(6):439-445
PubMed   |  Link to Article
Dumont C, Voisin T, Nourhashemi F, Andrieu S, Koning M, Vellas B. Predictive factors for rapid loss on the Mini-Mental State Examination in Alzheimer's disease.  J Nutr Health Aging. 2005;9(3):163-167
PubMed
Buccione I, Perri R, Carlesimo GA,  et al.  Cognitive and behavioural predictors of progression rates in Alzheimer's disease.  Eur J Neurol. 2007;14(4):440-446
PubMed   |  Link to Article
Bhargava D, Weiner MF, Hynan LS, Diaz-Arrastia R, Lipton AM. Vascular disease and risk factors, rate of progression, and survival in Alzheimer's disease.  J Geriatr Psychiatry Neurol. 2006;19(2):78-82
PubMed   |  Link to Article
Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T.Alzheimer's Disease Working Group.  Disease progression meta-analysis model in Alzheimer's disease.  Alzheimers Dement. 2010;6(1):39-53
PubMed   |  Link to Article
Soto ME, Andrieu S, Arbus C,  et al.  Rapid cognitive decline in Alzheimer's disease: consensus paper.  J Nutr Health Aging. 2008;12(10):703-713
PubMed
Cortes F, Nourhashémi F, Guérin O,  et al; REAL-FR Group.  Prognosis of Alzheimer's disease today: a two-year prospective study in 686 patients from the REAL-FR Study.  Alzheimers Dement. 2008;4(1):22-29
PubMed   |  Link to Article
Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease.  Neurology. 2010;74(19):1531-1537
PubMed   |  Link to Article
Ballard C, O’Brien J, Morris CM,  et al.  The progression of cognitive impairment in dementia with Lewy bodies, vascular dementia and Alzheimer's disease.  Int J Geriatr Psychiatry. 2001;16(5):499-503
PubMed   |  Link to Article
Soto ME, Andrieu S, Cantet C,  et al; REAL.FR Group.  Predictive value of rapid decline in Mini-Mental State Examination in clinical practice for prognosis in Alzheimer's disease.  Dement Geriatr Cogn Disord. 2008;26(2):109-116
PubMed   |  Link to Article
Etiene D, Kraft J, Ganju N,  et al.  Cerebrovascular pathology contributes to the heterogeneity of Alzheimer's disease.  J Alzheimers Dis. 1998;1(2):119-134
PubMed
Starkstein SE, Jorge R, Mizrahi R, Robinson RG. A prospective longitudinal study of apathy in Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 2006;77(1):8-11
PubMed   |  Link to Article
Smith MZ, Esiri MM, Barnetson L, King E, Nagy Z. Constructional apraxia in Alzheimer's disease: association with occipital lobe pathology and accelerated cognitive decline.  Dement Geriatr Cogn Disord. 2001;12(4):281-288
PubMed   |  Link to Article
Laukka EJ, Fratiglioni L, Bäckman L. The influence of vascular disease on cognitive performance in the preclinical and early phases of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2010;29(6):498-503
PubMed   |  Link to Article
Mielke MM, Rosenberg PB, Tschanz J,  et al.  Vascular factors predict rate of progression in Alzheimer disease.  Neurology. 2007;69(19):1850-1858
PubMed   |  Link to Article
Roselli F, Tartaglione B, Federico F, Lepore V, Defazio G, Livrea P. Rate of MMSE score change in Alzheimer's disease: influence of education and vascular risk factors.  Clin Neurol Neurosurg. 2009;111(4):327-330
PubMed   |  Link to Article
Silvestrini M, Pasqualetti P, Baruffaldi R,  et al.  Cerebrovascular reactivity and cognitive decline in patients with Alzheimer disease.  Stroke. 2006;37(4):1010-1015
PubMed   |  Link to Article
Abellan van Kan G, Rolland Y, Nourhashémi F, Coley N, Andrieu S, Vellas B. Cardiovascular disease risk factors and progression of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2009;27(3):240-246
PubMed   |  Link to Article
Holmes C, Cunningham C, Zotova E,  et al.  Systemic inflammation and disease progression in Alzheimer disease.  Neurology. 2009;73(10):768-774
PubMed   |  Link to Article
Sanz C, Andrieu S, Sinclair A, Hanaire H, Vellas B.REAL.FR Study Group.  Diabetes is associated with a slower rate of cognitive decline in Alzheimer disease.  Neurology. 2009;73(17):1359-1366
PubMed   |  Link to Article
Pavlik VN, Doody RS, Massman PJ, Chan W. Influence of premorbid IQ and education on progression of Alzheimer's disease.  Dement Geriatr Cogn Disord. 2006;22(4):367-377
PubMed   |  Link to Article
Portet F, Scarmeas N, Cosentino S, Helzner EP, Stern Y. Extrapyramidal signs before and after diagnosis of incident Alzheimer disease in a prospective population study.  Arch Neurol. 2009;66(9):1120-1126
PubMed   |  Link to Article
Scarmeas N, Albert M, Brandt J,  et al.  Motor signs predict poor outcomes in Alzheimer disease.  Neurology. 2005;64(10):1696-1703
PubMed   |  Link to Article
Volicer L, Smith S, Volicer BJ. Effect of seizures on progression of dementia of the Alzheimer type.  Dementia. 1995;6(5):258-263
PubMed
Atchison TB, Massman PJ, Doody RS. Baseline cognitive function predicts rate of decline in basic-care abilities of individuals with dementia of the Alzheimer's type.  Arch Clin Neuropsychol. 2007;22(1):99-107
PubMed   |  Link to Article
Marra C, Silveri MC, Gainotti G. Predictors of cognitive decline in the early stage of probable Alzheimer's disease.  Dement Geriatr Cogn Disord. 2000;11(4):212-218
PubMed   |  Link to Article
Hui JS, Wilson RS, Bennett DA, Bienias JL, Gilley DW, Evans DA. Rate of cognitive decline and mortality in Alzheimer's disease.  Neurology. 2003;61(10):1356-1361
PubMed   |  Link to Article
Santillan CE, Fritsch T, Geldmacher DS. Development of a scale to predict decline in patients with mild Alzheimer's disease.  J Am Geriatr Soc. 2003;51(1):91-95
PubMed   |  Link to Article
Snider BJ, Fagan AM, Roe C,  et al.  Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type.  Arch Neurol. 2009;66(5):638-645
PubMed   |  Link to Article
Kester MI, van der Vlies AE, Blankenstein MA,  et al.  CSF biomarkers predict rate of cognitive decline in Alzheimer disease.  Neurology. 2009;73(17):1353-1358
PubMed   |  Link to Article
Yutzy B, Holznagel E, Coulibaly C,  et al.  Time-course studies of 14-3-3 protein isoforms in cerebrospinal fluid and brain of primates after oral or intracerebral infection with bovine spongiform encephalopathy agent.  J Gen Virol. 2007;88(pt 12):3469-3478
PubMed   |  Link to Article
Sunderland T, Wolozin B, Galasko D,  et al.  Longitudinal stability of CSF tau levels in Alzheimer patients.  Biol Psychiatry. 1999;46(6):750-755
PubMed   |  Link to Article
Blennow K, Zetterberg H, Minthon L,  et al.  Longitudinal stability of CSF biomarkers in Alzheimer's disease.  Neurosci Lett. 2007;419(1):18-22
PubMed   |  Link to Article
Buchhave P, Blennow K, Zetterberg H,  et al.  Longitudinal study of CSF biomarkers in patients with Alzheimer's disease.  PLoS One. 2009;4(7):e6294
PubMed  |  Link to Article   |  Link to Article
Stomrud E, Hansson O, Zetterberg H, Blennow K, Minthon L, Londos E. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults.  Arch Neurol. 2010;67(2):217-223
PubMed   |  Link to Article
Huey ED, Mirza N, Putnam KT,  et al.  Stability of CSF β-amyloid1-42 and tau levels by APOE genotype in Alzheimer patients.  Dement Geriatr Cogn Disord. 2006;22(1):48-53
PubMed   |  Link to Article
Cosentino S, Scarmeas N, Helzner E,  et al.  APOE ε4 allele predicts faster cognitive decline in mild Alzheimer disease.  Neurology. 2008;70(19, pt 2):1842-1849
PubMed   |  Link to Article
van der Vlies AE, Koedam ELGE, Pijnenburg YAL, Twisk JWR, Scheltens P, van der Flier WM. Most rapid cognitive decline in APOE ε4 negative Alzheimer's disease with early onset.  Psychol Med. 2009;39(11):1907-1911
PubMed   |  Link to Article
Holmes C, Ballard C, Lehmann D,  et al.  Rate of progression of cognitive decline in Alzheimer's disease: effect of butyrylcholinesterase K gene variation.  J Neurol Neurosurg Psychiatry. 2005;76(5):640-643
PubMed   |  Link to Article
Tumini E, Porcellini E, Chiappelli M,  et al.  The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer's disease patients.  Hum Psychopharmacol. 2007;22(2):75-80
PubMed   |  Link to Article
Porcellini E, Calabrese E, Guerini F,  et al.  The hydroxy-methyl-glutaryl CoA reductase promoter polymorphism is associated with Alzheimer's risk and cognitive deterioration.  Neurosci Lett. 2007;416(1):66-70
PubMed   |  Link to Article
Belbin O, Beaumont H, Warden D, Smith AD, Kalsheker N, Morgan K. PSEN1 polymorphisms alter the rate of cognitive decline in sporadic Alzheimer's disease patients.  Neurobiol Aging. 2009;30(12):1992-1999
PubMed   |  Link to Article
Belbin O, Dunn JL, Chappell S,  et al.  A SNP in the ACT gene associated with astrocytosis and rapid cognitive decline in AD.  Neurobiol Aging. 2008;29(8):1167-1176
PubMed   |  Link to Article
Kamboh MI, Minster RL, Kenney M,  et al.  Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer's disease.  Neurobiol Aging. 2006;27(10):1435-1439
PubMed   |  Link to Article
Licastro F, Chiappelli M, Grimaldi LME,  et al.  A new promoter polymorphism in the alpha-1-antichymotrypsin gene is a disease modifier of Alzheimer's disease.  Neurobiol Aging. 2005;26(4):449-453
PubMed   |  Link to Article
Murphy GM Jr, Claassen JD, DeVoss JJ,  et al.  Rate of cognitive decline in AD is accelerated by the interleukin-1α −889 *1 allele.  Neurology. 2001;56(11):1595-1597
PubMed   |  Link to Article
Bossù P, Ciaramella A, Moro ML,  et al.  Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 2007;78(8):807-811
PubMed   |  Link to Article
Chiappelli M, Nasi M, Cossarizza A,  et al.  Polymorphisms of Fas gene: relationship with Alzheimer's disease and cognitive decline.  Dement Geriatr Cogn Disord. 2006;22(4):296-300
PubMed   |  Link to Article
Li K, Dai D, Zhao B,  et al.  Association between the RAGE G82S polymorphism and Alzheimer's disease.  J Neural Transm. 2010;117(1):97-104
PubMed   |  Link to Article
Wallin AK, Hansson O, Blennow K, Londos E, Minthon L. Can CSF biomarkers or pre-treatment progression rate predict response to cholinesterase inhibitor treatment in Alzheimer's disease?  Int J Geriatr Psychiatry. 2009;24(6):638-647
PubMed   |  Link to Article
Zerr I, Kallenberg K, Summers DM,  et al.  Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease.  Brain. 2009;132(pt 10):2659-2668
PubMed   |  Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 26

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

Users' Guides to the Medical Literature
Clinical Resolution

Users' Guides to the Medical Literature
Clinical Scenario