0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contributions |

Reversible Cerebral Vasoconstriction Syndromes:  Analysis of 139 Cases

Aneesh B. Singhal, MD; Rula A. Hajj-Ali, MD; Mehmet A. Topcuoglu, MD; Joshua Fok, MD; James Bena, MS; Donsheng Yang, MS; Leonard H. Calabrese, DO
Arch Neurol. 2011;68(8):1005-1012. doi:10.1001/archneurol.2011.68.
Text Size: A A A
Published online

Objectives To compare the clinical, laboratory, and imaging features of patients with reversible cerebral vasoconstriction syndromes evaluated at 2 academic centers, compare subgroups, and investigate treatment effects.

Design Retrospective analysis.

Setting Massachusetts General Hospital (n = 84) or Cleveland Clinic (n = 55).

Patients One hundred thirty-nine patients with reversible cerebral vasoconstriction syndromes.

Main Outcome Measures Clinical, laboratory, and imaging features; treatment; and outcomes.

Results The mean age was 42.5 years, and 81% were women. Onset with thunderclap headache was documented in 85% and 43% developed neurological deficits. Prior migraine was documented in 40%, vasoconstrictive drug exposure in 42%, and recent pregnancy in 9%. Admission computed tomography or magnetic resonance imaging was normal in 55%; however, 81% ultimately developed brain lesions including infarcts (39%), convexity subarachnoid hemorrhage (34%), lobar hemorrhage (20%), and brain edema (38%). Cerebral angiographic abnormalities typically normalized within 2 months. Nearly 90% had good clinical outcome; 9% developed severe deficits; and 2% died. In the combined cohort, calcium channel blocker therapy and symptomatic therapy alone showed no significant effect on outcome; however, glucocorticoid therapy showed a trend for poor outcome (P = .08). Subgroup comparisons based on prior headache status and identified triggers (vasoconstrictive drugs, pregnancy, other) showed no major differences.

Conclusion Patients with reversible cerebral vasoconstriction syndromes have a unique set of clinical imaging features, with no significant differences between subgroups. Prospective studies are warranted to determine the effects of empirical treatment with calcium channel blockers and glucocorticoids.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure. Typical neuroimaging features of reversible cerebral vasoconstriction syndrome. A, Head computed tomography angiogram, sagittal maximum-intensity projection image, showing the classic “sausage on a string” appearance of both anterior cerebral arteries. B, Head computed tomography, axial image, showing subarachnoid hemorrhage overlying the right frontal lobe (vertical arrow). C, Brain magnetic resonance imaging, axial fluid-attenuated inversion recovery image, in the same patient, showing the right frontal subarachnoid hemorrhage (vertical arrow) as well as multiple dot-shaped hyperintensities (horizontal arrows) within the sulci of both hemispheres, suggesting the presence of dilated cortical surface arteries. D, Brain magnetic resonance imaging, axial fluid-attenuated inversion recovery image, showing the posterior-predominant crescentic hyperintense signal in the cortical-subcortical regions (arrow). Corresponding diffusion-weighted and susceptibility-weighted images (not shown) were normal. These findings suggest the presence of brain edema as described in the posterior reversible leukoencephalopathy syndrome. E, Brain magnetic resonance imaging, axial diffusion-weighted image, showing ischemic lesions (arrows) in the bilateral “watershed” regions of the middle and posterior cerebral arteries. F, Head computed tomography scan, axial image, showing a left frontal parenchymal hemorrhage.

Tables

References

Correspondence

CME


You need to register in order to view this quiz.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Topics
PubMed Articles
Call-Fleming syndrome: headache in a 16-year-old girl. Pediatr Neurol 2013;49(2):130-133.e1.
Reversible cerebral vasoconstriction syndrome. J R Coll Physicians Edinb 2013;43(3):225-8.
Jobs
JAMAevidence.com

The Rational Clinical Examination
Clinical Scenarios

The Rational Clinical Examination
Among Patients With Headaches, Who Should Have Neuroimaging?

brightcove.createExperiences();